b1
=
“w
-
[{5
¥,
-
O~
-

g
4
g
n

wd
S
e
®e
i
o8
&
m.r
h

RESEARCH ON AUTOMAT

AD-n189 618

gt © e ettt e N I R R < Bav et ik
N PRGN S I BEIC R SO Rt IR ST T AT M AP T e g B - N

e~

p 0.0 wn® 9.0 R 0 't 0t ' G Pl ’ e bie vy ..\.

——

1 rd ’mzz i

MLt £ i K
22 .

I s :

' ""ﬂ B B2 :

Is = |

g Y Y e W v e

AT lrlf‘

.
AN

r

»
"
- L] - - - v | - W W ,
~ AR ENS IS0 A
T i ‘\.\:. y .‘. RS RN NN \.r__f.i't:..-'._ .
* \ -' \ N " ~ '.‘ e e v, '. . ’ 'a v, '~.'.- .".- .11
g “'\' " A o -. "' P o A ey AT 2ot
- N) P WA N
\N‘- n_g-r‘. ._ .‘(:_ ‘,“ '_.(\‘,.,\':."-\,._ ... PAPAEN
o' ,' . 0 : '

Foopb, A% atatan, ad. gt gt a8, a0 a6 af A a8 Vo tal Yal a8 val AR faf Mol €0 "ol ¢ B a8 a8 & II.C‘.I\.!\-I..!‘---lx.‘

PHOTOGRAPH THIS SHEET o
o0 3
- » Zad
0 = LEVEL INVENTORY)
= >
D “~
(o0 Z "
00 Z Ny
o N
T | AFWAL-TR-87-1/ 3
' § DOCUMENT IDENTIFICATION N
< a -
_ is dechment has becs approved a
t t2v puhle rsiscse and esls; M8 [.
} 48 Q.mm' ".YT‘-.’Y_“MW .?‘
s o e s & s e B Ae e~ - ——— r_:
o
DISTRIBUTION STATEMENT e
N
ACCFESSION FOR 2
NTIS GRA&I h::
DTIC TAB C N
. { Ny
UNANNOUNCED dd D | l ::
JUSTIFICATION ELECTE N
FEB 0 91988 i w
BY 2
DISTRIBUTION / = N E 5
AVAILABILITY CODES ,C.
DIST AVAIL AND/OR SPECIAL)
DATE ACCESSIONED R
ﬁ - 3
' DiSTRIBUT:ON STAMP @
D!
DATE RETURNED o
) 'S = B
2o by 03 1 G 2
DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.
X
PHOTOGRAPH THIS SHEET AND REfURN TO DTIC-DDAC o
DTIC FORM T0A DOCUMENT PROCESSING SHEET SO T AAL T e ':1
-:\1

~

NP R R s

"

\‘.\ '._'f'..-'\ ‘-.."..‘_-

hag o ol YaR € 8 Oad KAk a0 Wogd b Wpg taf dab faR tae 0 IR AT BN TPORPUN e gt J SpV tab et Calb g g a A 2l N gt

AFWAL-TR-87~1166

RESEARCH ON AUTOMATIC VERIFICATION OF FINITE-STATE
CONCURRENT SYSTEMS

E.M. Clarke and 0. Grumberg

Carnegie-Mellon University
Computer Science Department .
Pittsburgh, PA 15213-3890 g

AD-A188 618

December 1987

Interim

-y x v @

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND N
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than 1in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licersing .
the holder, or any other person or corporation; or as conveying any rights or :
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

ke A Hofrrr Bicdlnis £ e

CHAHIRA M., HOPPER RICHARD C. JONES .
Project Engineer Ch, Advanced Systems Research Gp
Information Processing Technology Br

FOR THE COMMANDER

Elboed J eI

EDWARD L. GLIATTI
Ch, Information Processing Technology Br
Systems Aviconics Div

If your address has changed, if you wish to be removed from our mailing
Tist, or if the addressee is no longer emploved by your organization please
notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-6543 to help us mairtain
a current mailing 11st

v Copies of this report should not be returned unless return is required by
. security considerations, contractual obligations, or notice on a specific
! document.

e vy v e e m e ma my m e m e, L - - e s ety e e mu e e T e e e g A A A A A et
LIV oW o M) B e e e e e N e T A T e e N N e e
o A A "

Baab Sall et A0 Ao \‘

“u’
Unclassified
SECURITY CLASSIFICATION OF THIS PAGE
]
Form Approved
REPORT DOCUMENTATION PAGE OME No 0704-0188 "
N\
1a REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS N
‘ Unclassified :‘
[2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT <
Approved for public release; distribution ;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE is unlimited. : f
N
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) .
- !
CMU-CS-87-105 AFWAL-TR-87-1166 .
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION 3
. If applicable i Iri : : o~
Carnegie-Mellon University (if applicable) Air Force Wright Aeronautical Laboratories o
AFWAL/AAAT-3 -~
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code) : i
Computer Science Dept Wright-Patterson AFB OH 45433-6543 i
Pittsburgh PA 15213-3890 n
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER f..
ORGANIZATION (If applicable) -~
F33615-84-K-1520 -
8c. ADDRESS (City, State, and ZiP Code) 10 SOURCE OF FUNDING NUMBERS :
PROGRAM PROJECT TASK WORK UNIT :
ELEMENT NO NO NO ACCESSION NO |
61101E 4976 00 01
11. TITLE (Include Security Classification) -7
Research On Automatic Verification Of Finite~State Concurrent Systems 4
12. PERSONAL AUTHOR(S) .
E. M. Clarke, 0. Grumberg R
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT “
Interim FROM TO 1987 December 31 .
16. SUPPLEMENTARY NOTATION N
17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) N
FIELD GROUP SUB-GROUP N
K
19. ABSTRACT (Continue on reverse if necessary and identify by block number) -.
-
o
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 27 ABSTRACT SECURITY CLASSIFICATION .
B UNCLASSIFIED/UNLIMITED [SaME AS RPT O bTIC USERS .
223 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPH (Incluge Area Code) |22 E SV .
Chahira M. Hopper (513) g2)555 g§ XF%AI] AART= Ny
DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATON OF “='S FAGE "
Unclassified
A

%
| LS
I ~»
! .

b

LS

Table of Contents .
1. Introduction 1]
2. Computation Tree Logics 3 N
. 3. The CTL Model Checking Algorithm 5
4. Fairness Constraints 7 K
5. An Example 9
6. Other Approaches 13 .
7. Applications 16 R
8. Conclusion 19 .

.

N {

o

"

LY

hY

LS

%

~

4

[t

o

o

(&

K.

<

Ay

{1

.!

:

X

\ gt

N

by

v S
>

)

e

List of Figures

Figure 5-1: Two process mutual cxclusion program.,

Figure 5-2: Transcript of model checker exccution (without fairness constraint),

Figure §-3: Transcript of model checker execution (with fairness constraint).
Figure 7-1: Algorithm For Constructing Kripke Structure From Circuit
Figure 7-2: Krikpe structurce for unstable configuration of AND gate.

n',':' 's‘?’n ' ". o .‘n‘ U

P]

» 0. Py ¥

vi

AT N SN A ST BN NI '-(\:J‘:-"-'.:(TN A
(% a0 TN b Aalk

11
12
12
17
18

Research On Automatic Verification
Of Finite-State Concurrent Systems

E. M. Clarke and O. Griimberg
Carncgic Mcllon University, Pittsburgh

1. Introduction

Temporal logics were first developed by philosophers for reasoning about the ordering of events in
time without introducing time explicitly [Hughes & Creswell 77} Although a number of dificrent
temporal logics have been studied, most have an operator like G(f) that is true in the present if fis
always true in the futurc (ie., if fis globally true). To asscrt that two events e, and e, ncver occur at the
same time, cnc would write G(—eV—-e,). Temporal logics are often classified according to whether
time is assumed to have a linear or a branching structure. This classification muy occasionally be
mislcading since some temporal logics combine both linear-time and branching-time operators.
Instead, we will adopt the approach used in [Emerson & Halpern 83] that permits both types of logics to
be treated within a single semantical framework. In this papei”the meaning of a temporal logic fornula
will always be determined with respect to a labelled state transition graph; for historical rcasons such
structurcs arc called Kripke models [Hughes & Creswell 77).

Pnueli was apparently the first person to use temporal logic for specifying and verifying concurrent
programs [Puculi 77]. His approach involved proving desired propertics of the program under
consideration from a set of program axicms that described the behavior of the individual statements in
the program. Proofs were usually constructed by hand, and this task was in general quite tedious. Since
| many concurrent programs can be viewed as communicating finite statc machines, there was a strong
possibility that at least some of these programs could be automatically veritied. “Lhe tirst veritication
technique 1o exploit this observation was the CTL. model checking procedure developed by Clarke and
Emerson in [Clarke & Emcrson 81]. Their algorithm was polynomial in both the size of the model
i) determinced Ly the program under consideration and in the length of its specification in temporal logic.

They also showed how fairness {Gabbay et al 30] could be handled without changing the complexity of

.their algorithm. Handling fairness was un important step since the correctness of many concurrent

This rescaich was parmally supported by NSEF Grant MC S-82-16706 The sceond andhor, O Grumbere. is cirrenils on leave
from Lechmion, Tlasfaand w pariadly supported by a Wermaan postdoctoral Tellowship

o 5N

P

’

e

¢

£y’

T e s WM
»

“r
ot

M 5 v

o e
s
'l.ll

’'s

»
e,
"'-’

e P

. .!
\‘Q'

, algorithms depends critically on some assumption of this type: for example, absence of starvation in a
‘:?, mutual exclusion algorithm may depend on the assumption that cach process makes progress infinitely
"

::: often.

Wh

&)

a At roughly the same time Quielle and Sifakis [Quiclle & Sifakis 81] gave a model checking algorithm

3

:" for a similar branching-time logic, but they did not analyze its complexity or show how te handle an

",:': interesting notion of fairness. Later Clarke, Emerson, and Sista [Clarke et al 86a] devised an improved

" algorithm that was linear in the product of the length of the formula and in the size of the global state
graph. Sisda and Clarke [Sistla & Clarke 86] analyzed the model checking problem for a varicty of other

%

:‘ temporal logics and showed, in particular, that for lincar temporal logic the problem was PSPACE

: complete.

!

i')'

A number of papers have shown how the temporal logic model checking procedure can be used for

L)
: | verifying network protocols and sequential circuits ([Clarke et al 86a], [Mishra & Clarke 85], [Browne et
L5

§‘,' al 86), [Pill & Clarke 86), [Brownc et al 85}, [Browne & Clarke 86], [Browne et al 6b)). In the casc of
i N . .

::I sequeitial circuits two approaches have been developed for obtaining state transition graphs to analyze.
B

” The first approach extracts a state graph directly from the circuit under an appropriate timing model of
"1 circuit behavior. The second approach obtains 4 state transition graph by compilation from a high level
:;: representation of the circuit in a Pascal-like programming language. In practice the model checking
)

:, procedure is able to check state transition graphs at a rate of 100 states per sccond for formulas of

reasonable length. It has been used successfully to find previously unknown cerars in published designs

of asynchronous circuits.

bt . :
‘. Alternative approaches have been proposed by a nuinber of other rescarchers. The approach uscd by
. Kurshan [Kurshan 86} involves checking inclusion between two automata on infinite tapes. The first
3:"'. machine represents the system that is being verified; the second represents its specification. Automata
' e : : . .
:.(on infinite tapes arc used in order to handle fairness. Pnucli and Lichtenstein [Lichtenstein & Pnucli
. 1
:t: 85] reanalyzed the complexity of checking lincar-time formulas and discovercd that although the
]
complcexity appears exponential in the length of the formula, it is linear in the vize of the global state

_:\' graph. Bascd on this obscrvation, they argucd that the high complexity of lincar-time model checking
™ might still be acceptable for short formulas. Emcrson and Lei [Emerson & Lei 85] extended their result
! to show that formulas of the logic CTL*, which combines bouth branching-time and linear-time
“ operators, could be checked with essentintly the same complexity as formulas of linear temporal logic.
o5 Vardi and Wolper have recently [Vardi & Wolper 80 shown how the model checking problem can be
'. - . v . . .

< formulated in terms of automata, thus relating the maodel cheeking approach o the work of Kurshan,

L
')

4

A
N

d

v. o"‘ T R A A A A A '-.'\"\'."w."-.'x-.‘"-.':-."\." AT R :"-:'\- L .

S o P Al Ve e PRy eIt
E&.S'L'.L(.. P ";."n." L'.A“.';.":L. {

Although the model checking procedure discussed in this paper has alrcady been used to discover
some surprising errors in non-trivial programs, more work still remains to be done. Certainly the most
scrious problem is the state explosion problem. In analyzing a system of V processes. the aumber of
states in the global statc graph may grow exponentially with V. Recent research indicates, however,
that it may be possible to avoid this problem in some important cascs. For instance. techniquces
developed in [Clarke ot al 86b] may reduce the size of the state graph that nceds to be scarched when
many of the processes are identical. It may also be possible to exploit the hierarchical structure of a
complex concurrent program in order to reduce the number of states that need to be considered at any

one level of abstraction {Mishra & Clarke 85].

This survey is organized as follows: Scction 2 describes the syntax and semantics of the temporal
logics that are used in this paper. [n Section 3 we state the model checking problem and give an efficient
algorithm for checking simple branching-time formulas. in Scction 4 we discuss the issue of fairness
and show how the algorithm of Section 3 can he extended to include fairness constraints. Section S
demonstrates how the model checking algorithm can be used to debug a simple mutual exclusion
program. In Scction 6§ we describe some alternative approaches for verifying systems of finite state
concurrent processes. We analyze the complexity of checking Bnear temporal logic tormulas and outline
the techniques of Paucli and Lichtenstein {Lichtenstein & Pnucti 85 and Vardi and Wolper [Vardi &
Wolper 86].Additional applications to circuit and protocol veritication are discussed in Scction 7. 'The
paper concludes in Section 8 with a discussion of some of the important remaining rescarch problems

like the state explusion problem.

2. Computation Tree Logics

In this paper finite state programs are modclicd by labelled state-transition graphs, called Kripke
structures [Hughes & Creswell 77]. 1f some state is designated as the initial state, then the Kripke
structure can be unwound into an infinite wee with that state as the root. Since paths in the tree
represent possible computations of the prograrn, we will refer to the infinite tree obtained e this
manner as the computation tree of the program. Temporal logics may difter according to how they
handle branching in the underlying computation tree. In lincar temporal logic, eperators are provided
for describing events along a single computation path. In a branching-time logic the temporal operators
quantify over the paths that are possible from a given state. The computation tree o 11)
([Emcrson & Clarke 81), {Emerson & Halpern 83, [Clarke et al 864]) combines both branchinz-tune
and lincar-time opcrators: a path quanuticr, cuber A ("tor all computation pahs™) or £ (70 seime

computation path™) can prefiv an assertion composed of arbitrary combimatioss o the asual lise o time

*

Pl

T

e AR

operators G ("always™), F ("sometimes™). X ("nexttime™). and U ("untl™). The remainder of this

section gives a precise description of the syntax and semantics of these logics.

There are two types of formulas in CTL. : state fornulas (which are true in a specific state) and path
Sormulas (which arc true along a specific path). Let AP be the sct of atomic proposition names. Asstate

formula is either:

o A, if Ac AP.
o If fand g arc state formulas, then —f and f Vv g are state formulas.
o If f is a path formula, then F(f) is a state formula.

A path formula is either;

o A state formula.
o If fand g are path formulas, then ~f fv g, X f and fU g are path formulas.

CTL" is the set of state formulas generated by the above rules.

CTL ([Ben-Ari et al 83], [Clarke & Emerson 81]) is a restricted subset of CTL" that permits only
branching-time operators--each path quantifier must be immediately followed by exactly onc of the
operators G, F, X, or U. More precisely, CTL is the subset of CTL" that is obtained if the path formulas

are restricted as follows:

o If fand g are state formulas, then X fand fU g are path formulas.
o If fisapath formula, then sois ~f.

Linear temporal logic (LTL), on the other hand, will consist of formulas that have the form A f where
fis a path formula in which the only state subformulas that are permitted are atomic propositions.
More formally, a path formula is either

e An atomic proposition

o If fand g are path formulas, then —f, /v ¢, X f and fU g are path formulas.

We define the semantics of CTL" with respect t0 a structure M =<8, R. L>, where
e Sis a set of states.
® RC.SxS is the transition relation, which must be total. We write 5, — 5, to indicate that

(5.5)€R.
e [: S—P(A4P) is a function that labels each state with a set of atomic propositions true in

that state.

A P A A A M. e R R . m M B8 &

"y AN A RN) VAL
u&)’ M"‘dh."‘ :R‘ '_A.'C-s. _1.".{::"\."-\. T

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We definc a path in M to be a sequence of states, 7 = §.5,.. .. such that for every (20, 5,— i1 '

will denote the suffix of m starting at s;.

We use the standard notation to :ndicate that a state formula / holds in a suucture: M s/ means
that /" holds at state s in structure M. Sinnlarly, if £ is a path formula, V7 = £ means that / holds
along path 7 in structure M. The relation = s defined inductively as tollows (assuming that #; and £

are state formulasand ¢, and g, are path formulas):

1. sk= = Adel{s).

2. 5= f, = skef.

lse=fV e = skE=fiorsk=f,

4. sk=F(g) = there exists a path 7 starting with ssuch that # F=g,.

S.mbe=p = sisthe first statc of 7 and sk= f.

6. m =g = wkg.

TlaEg Ve = akFEgornkFg,

8. mk=Xg, = 7'kg.

9.7k=g Ug, = there exists 4 & 2 0 such that #¥ = g and forall0gj<k g,

We will also use the following abbreviations in writing C1'L" (CTL and 1.11.) formulas:

*fAg= ~(—fV-yp oFf = true Uf

* A(f) = ~KE(=f) ¢ Gf = ~F-f.

In ({Lamport 80}, [Emerson & Halpern 83]) it is shown that the three logics discussed in this section
have different expressive powers. For example, there is no CTL formula that is equivalent to the 1LTL
formula M FGp). likewise. there is no LTI formula that is cquivaient to the CTI. formula
AG(EF p). The disjunction of these two formulas (G p)Vv AG(EF p)is a CTL" formula that is not
expressiblc in cither CTI'L or LTL.

3. The CTL Model Checking Algorithm
Fet M = (5 R 1) bea fimte Knpke structine. Assume that we want to determine which states iy

satisfy the CE formula £, We will desien cur alaorthin to operate m steros: The estsiise processes

oo\ e

all subformudas of £ of lenath 1 the second stage processes all subtonmia. o eneth D

e,
AN

»

.
.

N

[
@

»

.
S
o,
v
v
P
v L.

the end of the i stage, cach state will be labeled with the set of all subformulas of length less than or
equal to i that are true in the state. We let the expression lubel(s) denote this set for state s. When the
algorithm terminates at the end ot stage n = length(f). we sce that for all states and for all

schformulas fof £, M.s = fiff fe lubel(s) .

Observe that AX can be expressed in terms of EX and that AU can be expressed in terms of KU and
EG:
AX/f = ~EX

A UL = ~(E[-AU (=L A =)V EG(=).

‘Lhus, tor the stage 1 algorithm 1t is sutficicnt to be able to handle six cases, depending on whether fis

atomic or has one of the following forms: =f, £iv £, EXf, Elf Uf] or EGf.
We will only consider the last two cascs, since the others are staightforward.

To handle formulas of the form /= E[f, U£] we first find all of those states that are labeled with f,.
We then work backwards using the converse of the transition sclation R and find 4l of those states that
can he reached by a path in which cach state is labeled with £ . All such states should be labeled with /.

This step requires time O(| S|+ R1).
Thc casc in which /= FG £ is slightly more complicated and depends on the following obscrvation,

Lemma 1D Let M’ be obtained from A/ by deleting from § all of those states at which £ docs not
hold and restricting R and L accordingly. Thus, M/ = (S’ R/, L’) where S’ = {se S|[MsE=£},

R’ = Rlg/xs’.and L’ = L}gs. Then Mis k= EGy iff the following two conditions are satisticd:

l.seS’

2. there casts a path in S/ that leads from s W somie node 1in a non-irivia! sttongly connected
7 . .
component” ot the graph (S7.R7).

Proof: Assume that M sk= FGf . Clearly se S7 . [et @ bean infinite path styung at ¢ such that £
holds at cach state on . Since M ois fimte, it must be possible (o write 7 as 7 = 7,7, where 754

fintie wattal scgment and a7, 15w mtinate suiha o 2 oweth the proporty that codh state o 0 vosurs

T et e e et ot T Mt -
o PP WP LG WO YO0 VPN T oy ooy ¢

¢ oA A e - s at e o e e N e ey me e e
B T D e v T O e A W A e e e I O A e R R X

infinitely often. Obviously =, is contained in S/ . Let C be the set of states in #,. Cis a nontrivial
strongly connected component of S7 . To see this, let 5, and s, be states in C. Pick somc instance of s,
on = . By the way in which ar, was sclected, we know that there is an instance of s, further along =
The scgment from 5, to s, lics catirely within C and hence within S’ . This segment is a finitc path

from s, to 5, in §/. Thus. both condition (1) and condition (2) arc satisfied.

Next, assume that conditions (1) and (2) are satisficd. Let 7, be the path from sto «. lect 7, bea
finite puth of length at least one that leads from ¢ back to . Lhe existence of 7, 1 guaranteed since C iy
a non-trivial strongly connected componerit. All of the states on the infinite path o = o ,“ satisty £

Since 7 is also a possible path starting at sin M, wescethat Ms=FEG/. O

The algorithm for the case of /= EG /| follows directly from the lemma. We construct the restricted
Kripke structure M’ =(S’, R’, L’) as described in the statement of the lemma. We partition the
graph (S, R’) into strongly connected components and find those states that belong to nontrivial
components. We then work backwards using the converse of R and find all of those states that can be

rcached by a path in which cach state is labcled with f. This step also requires time O(| S| + | R[).

[n order to handle an arbitrary CTL formula f]. we successively apply the state labeling atgorithm o
the subformulas of f], starting with the shortest, most deeply nested and work outward to include all of
f,. Since cach pass takes ime O(| S| + | R|) and since f) has length(f;) duferent sublormelas, the
entire algorithm requires O(length(f)-(1 S| + | R|)).

Theorem 2: There is an algorithm for determining whether a CTL. formula £, is truc in state s of the
structure M = (S, R, L) that runs in time O(length(f,)- (| S+ [R})).

4. Fairness Constraints

In verifying concurrent systems, we arc occasionally interested only in correctness along fuir
exccution sequences. For example, with a system of concurrent processes we may wish to consider only
those computation sequences in which cach process is exccuted infinitely often. When dealing with
network protocols where processes communicate over an impertect {(or lossy) channcl we may also wish
o restrict the set of computation sequences, in this case the wnfair exccution sequences are these n
which a sender process continuously transmits messages without any reaching the receiver due to errane

hehavior by the channel.

Rou hiv speakine afairness condition asscrts thut requests forservice e = mted "t ficionite oo™

.« e e s

P

> s

i

A Al

¥

‘o i Yl

-

-
- .,

P

L]

AT SN (NS e

‘ . 2048, 0a 2ia Al 1w A’ AN e gin aa B e ithat b @ d A b Al FRTT RV P S W WO WU W, Py W (W

Different concepts of what constitutes a "request” and what “sufficiently often” should mean give rise
to a varicty of notions of fairness. Indeed, many different types of fairness and approaches to dealing
with them have been proposed in the literature: we refer the reader to [Gabbay ct al 80]. [1 amport 80).
[Quiclle & Sifakis 82], and ([.chmann ct al 81] for more extensive treatments. Uhe text by [Francez

[Francez 36] also gives an excellent survey of the various ty pes of fairness.

[n this section we will show how to extend the CTL model checking algorithm o handle a simple but
tunduniental type of fairness in which certain predicates must hold infinte!y often alonyg every tur path.
([Clarke ot al 86a] shows how to handle a richer class of fuirness constraints.) In thes case it fellows from

[Emerson & Halpern 83] that correctness of fair executions cannot be expressed in Cl1.

In order to handle fairness and stll obtain an efficient model checking algorithm we modify the
semantics of CIL. The new logic, which we call CIL¥ . has the same syntax as ClE. But a structure is
now a d-tuple M = (S, R, L. F') where S, R, /. have the same meaning as in the case of C1'L, and #is a
collection of predicates on S, FC 2.A path = is [~-fair iff the following condition holds: for each
G € F, there are infinitely many states on m which satisfy predicate ;. C1 LF has cxactly the same
semantics as CTL except that all path quanufiers range over fair paths. The first step in checking C rLf
formulas is to determine the fuir sirongly connected componenis of the graph of M. A strongly connected
componcnt is fair if it contains at least onc state from cach set in F. Formally, let # = {7, lbea
collection of subscts of 5. A strongly connected component C of the graph of M s flerff for cach) 1n
F, there is astate 1, € (CN G)).

Lemma 3: Given any finite structure M = (S, R. L, F') where F is a sct of fuirness constrauits and a

staie s, € S, the following two conditions are equivalent:

L. There cxists an F~fair path in M starting at s,

2. There exists a fair strongly connected component € ot (the graph o) M wuch that there s a
finite path from sy to astate t € C.

The proof is straightforward and is given in [Clarke et al 86a). We next extend our model ¢hecking
algorithm to CTL F. We introduce an additional proposition (. which is true at a stace itf there < a tar
path starting from that statc. This can casily he done, by obtaining the strongly connected components
of the graph associated with the structure and marking d componant oy Uit contams at st one
state from cach (7, in /. By the above lemma every state i a i stronghs connecied component is the

start of an infinite tair path. Thus, we label a state with @ tf there v a4 paih rom that state o some

f- " e~ . .
NN ‘AL{};\ :M.._.L‘t.

node of a fair strongly connected component. As usual we design the algorithm so that after it
ternunates each state will be labeled with the subtormulas of £ truc in that state. We consider the two
interesting cases where f is a subformula of £y and cither f = K[U] or f = FGf. We assume

that the states have already been labeled with the immediate subformulas of £ by an carlier stage of the
algorithm,

L f= F[LUL]: fistrucin astate iff the CTI. formula F[£ U (£, A Q)] is truc in that state,
and this can he determined using the CTIL. model cliccker. Again, state s is labeled with £iff
Sis true in that state.

2. f= EG(f): To determine if sE=EG (/) we use the procedure deseribed in section 3t
check skE= TG A Q) inthe structure with the additional proposition Q.

[t is casy to sce that the above algorithm runs in time O(length(f)-(|S] + | R])).

Theorem 4: Therc is an algorithm for determining whether a CTLF formula £, istrue in state s of the

structure M = (SR, L, F) with F as the set of fairncss constraints that runs in time
O(length(£)- (| S| + | R|)).

8. An Example

In this scction we illustrate how the model checker can be used to verify a simple, but not entirely
trivial, concurrent program. The example is a two process mutual exclusion program that was manually
proved correct using lincar temporal logic by Owicki and Lampert in {Owicki & [Lamport 2], The
program, cxpressed in a variant of the CSP programming language [Hoarc 73], is shown in Figure §-1.
In this version of CSP processes may have global variables (c.g. p/ and p2), and assignments to such
variables are assumed to be atomic. Since our verification technique can only be used to analyze finite
state concurrent systems, we require that all variables be boolcan and that all messages between
processes be signals. Labels (e.g. NC/ and NC2) are used to indicute that flow of contrel has reached a
particular point in some process. In our example there are two precesses S7 and 52, and cach process
has three code regions: a noncritical region NCi in which the process computes sone data values that it
wishes to share with the other process, a trying region Tiin which the process cxecutes a protocol to
obtain cntry into the critical section, and a critical section CSi in which the process updates shared
variables. To prevent a race condition that might result in unpredictable valucs being assigned to the
shared variables, onty onc process is allowed to be inits critical section atany given time. Note that dhe
two processes are ditterent; hence this is not a symmerrie solution t the mutual exclusion problem,

When the CSP program is compiled a state 2raph with 77 states s obtaed. Vitiough this s notan

cxtrericly Lirge state machine, it would nevertheloss o gquae tedious tora i to debag.

5 e
RGP Sy

A

.;‘ 3 -'. PR .:. ‘.‘ ’ ~.;‘.~\:;w

T
L

« f’f'l v

T 2
PR

L L%

ol '-, '{‘,.’ :.‘l‘. l’ '3

‘e s

We initially run the verifier without any fairness constraints--See Figure 5-2. We first checek to see if

both processes are ever in their critical regions at the same time. This property is succintly cxpressed by
the CTI. formula FF(CS1 A €S2). The veritier rapidly determines that the formula is false--hence, the
program docs guarcntee mutual exclusion. Time is measured in 1/60 of a sccond. The first component
measures user cpu time, The second component measures system cpu time. We next check for absence
of decadlock. This is expressed by the formula AG(EF(CS1v CS2)). The verifier determinds that this
formula is satisficd: thus, from any state that is reachable trom the initial state it is always possible to get
to cither €S/ or €S2,

Absencc of starvation for process 1 is expressed by the formula AG (71 — AF CS1). This property is
not satisficd without a fairness constraint. The reason is quite simple. When we build the global state
graph for the program we do not make any assumptions about the relative speeds of the two processes.
‘Thus, the sccond process can make any dlebcr of steps between steps of the first process. [n fact, the
second process can even run forever, thercby preventing the {irst process from cver making another
step. We can rule out the sccond type of behavior by means of fairness constraints which require that
each process be given a chance to exccute infinitely often. In Figure 5-3 we restart the verifier with
several fairness coustraints that prevent cither process from remaining forcver at the same statement
while cnabled to make a step. Under these assumptions the tirst process will never starve. However, the

possibility of starvation still exists for the second process.

A good solution to the mutual exclusion problem should not require that processes alterndte eniry
into their critical regions: CS1, €S2, CS1, CS2,... . In order to test that the algorithm given in Figure

5-1 does not rcquire strict alternation, we check the formula

AG(CS1 = A[CSLU(=CSLAA[RCSLUCS?))).
This formula asserts that if process 1 enters its critical section and subsequently leaves it, then it cannot
eater it again until process 2 has entered its critical section, The verifier determines that the formula s
falsc in less than a second. This example shows how the basic temporal operators, particularly the vard

opcrator, can be nested to express complicated timing properties.

Finally, the verificr has a counterexample feature (that is not shown in the transeripts). When this
feature is enabled and the model cheeker determings that a tormulais false, it will attempt to find a path
in the state graph which demenstrates that the negation of the formula iy true. For example, ot the
formula has the form AG (), our system will produce a path o a stte in which =/ holds. For

instance, when the venfier determines that the Last formula above is false, 1t pomts out an execution of

.....

11

pl,p2: bool;
NC1,NC2,7T1,T2,72a,CS1,CS2: label;

S1
S1

I
S2

,S2: process;

(
pl := False;
*[
true ->
<<NC1>> skip; --noncritical section 1
pl := true;
<<Tl>> *[p2 -> skip]:
<<CS1>> skip; --critical section 1
pl := false
]
]
L
p2 := false;
*
true -»>
<<NC2>> skip; --noncritical saection?
p2 := true;
<<T2>> *[pl ->
p2 := false;
<<T2a>> *pl -> skip]:
p2 := true
K
<<CS2>> skip; --critical section 2
p2 := false
]
]

Figure 5-1: Two process mutual exclusion program,

TP R

WRRA LSS

Yyt

.

.r’-‘t‘l\n L3

o

o
L

N e S WY
N)

Y

&, B §ia ASa 4's B f4a @t 0 s, ‘ » ‘o A e gt g v\ bo BY " 4 \, \ X, \

12
¥
\
, CTL MODEIL. CHECKER (C version 2.5)
R
A |= EF(CS1 & CS2).
) The equation is FALSE,
1
’ time: (24)
§ |= AG(EF(CS1| CS2)).
; ‘The equation is T RUE.
4 tnie: (42)
) = AG(T1-> AF CSD).
: The cquation is FALSE.
L]
v time: (17 12)
L)
Figure 5-2: Transcript of mode! checker execution (without fairness
constraint).

! Fairness constraint: ~NC1,
i Fairness constraint: ~NC2,
X Fairness constraint: ~CS1,
‘ Fairness constraint: ~CS2.
R Fairness constraint: ~T1| P2.
3 Fairness constraint: ~12 | pl.

Fairness constraint; ~T2 | ~pl{ T2a.
K Fairness constraint: .
; |= AG(T1 -> AIF CS1).

The equation is TRUE,

time: (100)
)
’ = AG(T2-> AF CS2).
! The cquation is FALSE.
' ime: (299)
3
\ |= AG(CS1->A[CS1 U (~CS1 & A[~CS1 U CS2)).
4 The cquation is FALSE.
. time: (38 17)
4
! Figure 5-3: Transcript of modecl checker execution {with fairness constraint).
1
¥
[}
¥
i
3
o T L T R A S A R LR

o e
LU
A

13

the mutual cxclusion program in which process 1 enters its critical region, leaves, and recnters without
process 2 cntering its critical scction in the meantme. This feature is quite useful tor dcbugging
purposes.

6. Other Approaches

Several papers have considered the model checking problem for linear temporal logie forniulas. 1et
M = (5. R 1) be a Kripke Structure with s, € S.and let A fbe alincar temporal logic formula. Thus,
fis a restricted path formuda in which the only state subformulas are atemvic propositions. We wish o
determine it M.y, = A f. Notice that M s = A E My = =E -/ Conscquently, ity sutticient to be
able to check the truth of tormulas of the torm K f where fis a restricted path formula. [n general, tus
problem is PSPACE-complete {Sistla & Clarke 86). Although the proof ot this PSPACH -completencss
result is beyond the scope of our survey, it is casy to see that the model checking problem is NP-hard
for formulas of the form E.f where fis restricted path formula. We show that the directed Hamiltonian

path problem is reducible to the problem of determining whether V. s f where

e M is a finite structure,
e sis astate in M and
o fis the asscrton (using atomic propositions p,,p,):

FlFp A . AFp, AG(p, = XG=p)A ... AGlp, — XG=p)|.

Consider an arbitrary directed graph G = (V. A) where V= {v. ..., v, }. We obtain a structure
from (; by making proposition p; hold at node v, and false at all other nodes (for 1<ign), and by
adding a source node u; from which all v; are accessible (but not vice versa) and a sink node 4, which

is accessible from all v, (but not vice versa). Formally, let the structure M = (U, 8. /) consist of

LI

il

VU gy where uéV,

>
i

AU {(u,. v)v, € VYU {(v, 1)

v, € YU {0} and

L is an assignment of propositions to states such that

e pistrucin v for 1<i<n

o pisfalsein v for 1<iy<n inj

o psfulseinu ., for l <isn

[A I

AR AT

'y

5 o

P ol o S P

.‘.‘......‘-.;\. "

<

i o o € X € 5

L P TT LE

|
Y

WL T TR TR

P .n. ‘;' 'n-l i

L P P A T
o2 DA AN .]

e

P ara, AA, o)

-

U

bes™

14

It is casy to sec that M.u, k= fiff there is a directed infinite path in A starting at w. which goes through
all v, ¢ ¥ exacdy once and ends in the sclf loop though «,. Note that the formula fin the above
construction has essentially the same size as the as the graph (. Suppose that the length of the formula
to be checked was known to be much simaller than the sizc of the Kripke structure under consideration.
Would the complexity still be high in this case? A carcful analysis by Lichtenstein and Pnuchi
[T.ichtenstein & Pnucli 85] showed that although the complexity is apparently exponential in the length

of the formula, it is lincar in the size of the global state graph. We brictly describe their results below.
Let fbe a restricted path formula. The closure of £ CH), is the smallest set of formulas containing £
and satisfying:
o ~f e CI(f)Iff e CL(S)
oif fVAeCI(f). then £, fie CI(f)
oif Xfi e CL(f).then f € CL(f)
oif =X f e CL(f). then X—f € CL(f)

oif fULeCL(S), then £, £, XUfUf) e CI(f)
[t can be shown that the sizve of CI(f) is 5 lengt!{ f).

Anatomisapair A = (s, £,) with s4€S and F CCL(f)UAP such that:
o for cach proposition Q € AP, Q € I',iff Q¢ [(s,)
o forcvery fie CL(f), fie [iff =fieF,
o forevery f, € CL(f), fivfie F iff fior fie Fy
o forevery =X/ € CL(f), ~Xfi € F iff X=f ¢ F,
o forevery fl. € CL(f). fUf e F iff fre 7 or fLXYUA € Iy
Now, a graph G is constructed with the set of atoins as the set of vertices. (AB) 1s an cdge of 5t
(s4 sg) € R and for every formula £, if Xf e l7, then f € Fg. An eventuulity sequence is an ifinite

path o in (such that if fUf, ¢ F, for some atom A on «, then there exasts an atom B, reachable

from -t atong o, such that fi € /.

Lemma 5 M. k= F £ iff there exists an eventuality sequence starting at an atom (s,) such that
fel.

PRI .-

PP Y, Pias oy (o ™ > P ST S S P L
VRIS NI E s g T TN AT AN A AT AT

A A .

15

A non-trivial strongly connected component C of the graph G is said to be selffulfilling iff for cvery
atom A in C and for every fUf; € F 4 there exists an atom Bin C such that f; € #g.

Lemma 6: M.s k= F £ iff there exists an atom A = (5.) in ' such that f¢ / and there cxists a path

in G from .1 to aselt-fulfilling strongly connected component.

I.emma 6 be used as the bass for a lincar temporal logic model checking algorithin, This algorithm
has the tme complexity OS] +[R])- 2Dy ichienstein and Prucli Turther showed hosw (s
basic alzonthm could he extended to handle a number of ditferent notions of fairness with cssentially

the same comiplexity.,

An alternative approach duc to Vardi and Wolper [Vardi & Wolper 86] explotts the close relationship
between lincar temporal logic formulas and Biichi awtomata. A Buchi cutomata is a tuple

A=(Z S p. S, F), where

e X is an alphabet.

e S is a sct of states,

®p:SXT— 25 is a nondeterministic transition function.
e 5,5 isasctof initial states.

o [TZS is asetof designated states.

A run of A on an infinite word w=aa, ... isascquence ss where 5, €S, and s, € p(s,_.. «), for

all i21. Arun g3, ... is accepting if there is some designated state that repeats infinitely often. i.e., for
some s € /° there are infinitely many i 's such that s, = 5. The infinite word wis uccepted by A if there is
an acceptng run of A over w. The sct of infinite words accepted by . is denoted L(44). The following

thcorem is proved in [Vardi & Wolper 86].

L.emma 7: For every linear temporal formula A £, a Biichi automata A, can be constructed, where
2 =2 and (] £ 2% such that L(.1/) is exactly the set of computations satistying the fornula

JA

A Kripke Structure M = (S, R, [) with imtial state s, € Scan be viewed as a Biichi anutomaton
Ay =(Z.5 {s,}. p. S) where T = 2P and 5 € pls. a) iff (s, s') e R and a = 1(s). Note that any
infinite run of this automaton is accepting. L(.1y,) is the set of computations of Ay, Thus, inorder to

determine whether Mos = A fitis sufficient to check whether LA)N 12,) is empty. TTis can he

P e B R W S P g O Co AT NN
) Y SAASASARLRASLARLE L HERT W AP SN

@, "

L3 - o .« " on
ALY M o

"L
VA

R

g .
D

- - a
...‘A‘. 1" ‘."l, o

b

I
gt v v e

N SR LI o P

",

LA

L
a)

‘a_c_»_0

e, e e “
<"{"f’-'l. ‘-.""

o
-

<

-

-

¢~ -

W

- -

- ol - -

. e

16

determined by an automata theoretic construction with essentially the same time complexity as the

Pnucli Lichtenstein algorithm.

Onc of the expected advantages of using lincar temporal logic is that fairness constraints can be
handled dircctly. However. if fairness constraints are included as part of the specifications. the formulas
that must be checked will in general be quite large. For instance, consider a fairness constsaint which
requires that progress be made from any state in the programn. The formula that expresses this property
is

A r/\SﬂG(at s) = <rest of specificationd,
which has :i/c ((]5]). This problem was realized by Lichtenstein and Pnucli and by Vardi and Wolper.
They in fact handle fairness by means of fairness constraints in a manner very similar to the way it is
handled in [Clarke ct al 86a). Another problem with using lincar temporal logic is that in general it is
impossible to handle specifications which involve existential path quantifiers. Although it is possible to
check simple formulas of the form F f where fis a restricted path formula, it is not pussible to check
formulas like AG(EF f), which is used to express absence of deadlock in the example in section S.
Morcover, model checking for the full logic CTL " is no more difficult than for lincar temporal logic as

was shown by Etmerson and Lei ([Emerson & Lei §5],

Theorem 8: If we arc given an algorithm A/.;,, to solve the model checking problem for linecar
temporal logic, then we can construct an algorithm AL7,* for the tull logic CTL " that has the same

order ot complexity as AL 7.

7. Applications

Scquential circuit verification is a natural application for the type of veriticr discussed i this paper.
Bochmann [Bochmann 82] was probably the first to realize the usefulness of temporal logic for
describing the behavior of circuits. He verified an implementation of a scif-timed arbiter using fincar
temporal logic and what he called "reachability analysis.” The work of Malachi and Owicki [Malachi &
Owicki 81] identificd additional temporal operators required to cxpress interesting propertics of circuits
and also gave specifications for a large class of modules used in self-timed circuits. Although these
rescarchers contributed significantly toward developing an adequate notatton tor cxpressing the

correctness of sequential circuits, the problem of mechanically verifying a circuit remained unsoived.

In [Mishra & Claike 88] Clarke and Mishra showed how the EMC algorithin could be used to veuty

various temporal propertics of asynchronous circuits, They developed a technigue for extracung a state

4
:.
)
» 17
,!
!,
"
L]
graph directly from a wire-list description of the circuit (i.c., from a description of the circuit in terms of
“
\ its components and their interconncections). The model checker was then used to show that state graph
N satistied various specifications expressed in temporal logic. [n this way they were able to determine that
) a sclf-timed queue element described in Seitz’ chapter of Mcead and Conway [Seitz 80} did not satisfy its
i
specifications. ‘their work was later extended by Browne, Clarke, Dill. and Mishra [Browne ct al
R/
) 86] who showed. in gencral, how a mixed gate and switch level circuit simulator could be used to extract
a state graph from a structural description of a sequential circuit. "The basic simulation algorithm is
1 shown in Figure 7-1. Circuits are usually designed under the assumption that certain input scyuences
and combinations will not occur. Their program cxplois this ebservation to prevent 4 combinatorial
) explosion in the number of states that arc generated, by allowing the user to specify a set of conditions
» under which the inputs can change.
»
5 {The procedure below uses a hash table that maps node
value assignments to states.To construct the state machine,
; call this procedure on a node_value_assignment for the
N initial state.}
{
" procedure BuildGraph(Node_value_assignment) return a state
N begin
if there is a state for the node_value_assignment
y already in the table then rcturn the state;
; clse
L Create a new state;
@ Label state with nodes that have 1 values;
0 Store state and node values together in hash table;
; for each possihle input assignment do
. Combine current values for internal nodes and input
' assignment into a new node_value_Aassignment;
K Simulate one step to find a new node assignment:
] Call BuildGraph recursively on new node Aassignment;
j Add value returned by previous line to successors of
3 current state;
end
; end
end
A Figure 7-1: Algorithm For Constructing Kripke Structure From Circuit
3
b
. The circuit simulator in {Browne et al 86] used a unit-delay uming modcl in which the swiching
L . . - . .
b delays of all the transistors and gates are assumed to be equal. While a unit-delay model is satistactory
o for synchronous circuits, it may not he appropriate for asynchionous circunts. In [l & Clarke 86} il
¥
. o \
f: and Clarke showed how Kripke structures could be extracted from a gate level description of a cucut |
|
X under a model of circuit behavior that permitted arbitrary non-zero delays to be assoctated with the
N o -
\ outputs of the pates. The basic idea behind therr approach is quite simple. Consider an AN oo with
1)
o
D)

i, .. e o m e e W a e et e n s e e e e, e e e i
"»‘_Jt,. D .‘) e ."-"'-f QP AP Y < - .'-'.r '.**r.r '-".{'\-I'\"".l"'('\

» s e e & & 4

ta- .
‘:':‘t‘,‘ ‘f\l.t,

-

MY
LXK

18

two inputs, x and y, and a single output z. Assume that the gate is in an unstable configuration with x
low, y high, and z high. The Kripke suructure for the circuit containing this gate will have a state
corresponding to the unstable configuration as shown in Figure 7-2. The state will have a self-loop and
a transition to another state representing a stable configuration in which the output is low. Fairness
constraints, as described in Scction 4, are used to insure that the system docsn’t remain n an unstabic
configuration forever. In the case of the AND gate, it is sufficient to require that witinitely often

z=xAy.

Figure 7-2: Krikpe structure for unstable configuration of AND gate.

In practice, the arbitracy delay model is much too conservative. Many circuits are “dmost speed
independent™ They do ot appear to be correct under a pure arbitrary delay model, but would work
given reasonable assumptions about the relutionships between the delays. When the circuit designer
has a great deal of control over the magnitudes of circuit delays, exploiting more detiled ¥nowledge of
circuit timing can result in smaller and faster circuits, In fact, actual circuits often rely on such
assumptions. [n[Brownc et al 85] and [Dill 86] a method is described for adding such assumptions 1o a
circuit description and incorporating them into the state-graph construction. Possible timing constraints
include constant upper and lower bounds on individuat delays, and bounds on the differences between
dclays. Using constraints of this form, one can say for example: “the delay of the it AND gate 18
between § and 10 nanoseconds” or “the delay of the first AND gate is greater than the Jdelay of the
second AND gate.” The state graph constructed with respect to a particular sct of delay assumptions
rules out some circuit exccutions which would be aliowed under an arbitrary delay model. Hence,
formulas in CT1. which might not have been true in an arbitrary delay modcel may be true with respect
to particular delay assumptions {because all the counterexample paths are ruled out by ihe dely
assumptions). This technigue was applicd to a patented asynchronous quene cellin [Browne ot al 85)

The authors determined that the circuit did not mect its specifications under the arburary element dely

] ot om T U I S U ATl W R UL b} MK A v a LY . - L, Y, At -‘_"'..- T -
‘s_;\n S N J,__-.,_,\. S ~.¢~,'.\.’.'_._,.___ O e Tl Voo o ..

A Al e *

TN

¥

C A A (A S S

19

model. However, under the assumption that the input was slower than two of the circuit gates, they

showed that the circuit met its temporal logic specifications.

An alternative approach obtains the state diagram by compilation from a spectfication of the original
{synchronous) circuit in a simple programming language-like notation. Browne and Clarke ([Browne et
al 86}, [Browne & Clarke 86]) usc a Pascal-like state machine description language called SML for this
purnuse. ‘The language includes the standard control structures if, while, ard loop/exit. A cobegin
statement 1s also provided for simultancous exccution of statements in lock-step. Since SML programs
will ultimately be implemented in hardware, the only data types nermitted are beclean and (hounded)
integer. The output of the SML compiler is a deterministic Moore Machine that can be sutomagcally
implemented as a PLLA, PAL, or a ROM. The output can also be analyzed for correctiness using the
EMC algorithm. I[n [Browne 86} Browne dcscribes a specialized version of the EMC algonthi that can

check Moore machines much more rapidly than the original algonthm,

Another potential area of application is the verification of network communication protocols. The
alternating bit protocol [Bartet et al 69] for reliable transmission of messages by a noisy communication
channel is a simplc examnple of such an algorithm. By using the CTL model checking procedure it is
possible to determine in a few scconds whether this protocol mecets its specifications [Clarke ot al §aa).
Sifakis at Grenoble [Quiclle & Sifakis 81] and Kurshan at Bell [.abs [Kurshan 86] have also considered
applications involving network protocols. The dclay assumptions mcentioned above may be usetul for

describing the real-tine behavior of such protocols.

8. Conclusion

Although the verification technique described in this paper has already been used to find some
nontrivial errors in circuit designs and communications protocols, more rescarch needs to be done
before it will become a truly practical debugging ool fur use by system designers. One problem s e
expressibility of the underlying temporal logic. For circuit specitication tiniing Jiagranis may be imore
natural to use than temporal logic formulas. Of course, temporal logic 1s more general since there s no
analogue of negation, disjunction, or conjunction for uming dugrams. It may be possible to cither
systematically translate timing diagrams into temporal logic formulas or check them directly using an
algorithm similar to the one uscd by the model checker. If so, tus would simplify the task of specitying
a cumnplicated circuit and also allow the designer to be mote contident that specifications actuaily mean

what he thinks they mean.

RSN G

¢ s 5 s s o o

NPT T AN

ACALEASALLOLL LR RA RS

20

The most important problem, however, is the siate explosion problem. There are several different
strategies for handhing this problem. [n verifying asynchronous circuits, for example, buggy circuits
sometimes result in much larger state graphs than correct circuits. This happens because the activity in
the circuit is inuch more divordered after an error has occurred. Onc possible solution in this case is to
run the program which builds the state graph and the medel checker as co-routines, creating <tates only
as they nced to be referenced by the model-checker. In [I0l 86] this technique is called uzyv stare
generanon, by analogy to lazy evaluation in programming language implementations. By using his
method, an crror could be discovered and reported after construcung only a small pare of the enure
state graph; dus would not oaly speed up the verification process, 10 would also moeke it possble o

verify some circuits which could notbe verined if the entire goaph had w be constructed.

Another approach to the state explosion problem is to exploit the hierarchical structure of complex
finite state concurrent systems. If an appropriate subset of C'HLL is used ({Mishra & Clarke X5], [Clarke
ct al 86h]), then lower level subcircuits can be simplified by "hiding™ some of thetr internal nodes (more
precisely, making it illegal to use them in temporal logic formulas) and meraing groups of states that
become indistinguishable into single state. Preliminary rescarch in [Mishra & Clarke 83] indicates that
by using this t2chnique it may be possible o cut-down dramatically on the number of states that need

to be examined.

Finally. special techniques may be appropriate for concurrent systems that are composcd of mun,
idenucal processes. Consider, tor examiple, a distributed mutual exclusion algorithm for processes
arranged in aring network in which mutual cxclusion is guarantced by means of a token that 15 passed
around the ring ([Dijkstra 85). [Kurshan 85]. [Martin 85]). .\ strategy that is often used for dehuesing
such systems is to consider first a reduced system with one or two processes. it s possible o show that
the reduced system is correct and if the individual processes are really identical, then one is terptad o
conciude tet e entire systemn will be conect. Ta [Clacke ¢t ol 86D) an aitempt s made o grovnde a
solid theoretical basis that will prevent fallacious conclusions in arguments of tus type. fhe auihers
describe a temporal logic called Indexed CT1 S or ICTL for specitying networks of identical processes,
The logic includes all of CIL" with the exception of the nexttime operator; in addition, it permits
formulas of the form /\ 1) and V(1) where f{e) is a formuia in which all of the atomic prepositions
arc subscripted by o« I\ Kripke st‘ructurc tor a family of Vadentcal precesses may be ohtumed as a
product of the state graphs of the individual processes. Instances of the same datonie proposition i

ditferent procosses are diungushed by using the number of the process ds a subscuipte thus,

reprosents the mstunce of atormie proposition Fassectated wiih process S,

21

Since a closed formula of the new logic cannot contain any atomic propositions with constant index
values, it is impossible to refer to a specific process by writing such a formula. Hence, changing the
number of processes in a family of identical processes should not effect the truth of a formula in the
logic. This intuitive ideca is made precise by introducing a new notion of bisimulation [Milner
79] between two Kripke structures with the same set of indexed propositions but different scts of index
valucs. [t is possible to prove that if two structures correspond in this manner, a closed formula of
Indexed CTL” will be truc in the initial state of onc if and only if it is truc in the initial state of the

other.

These idecas are ilustrated in {Clarke ct al 86b] by considering the distributed mutual exclusion
algorithm mentioned above. The atomic proposition ¢; is true when the /-th process is in its critical
region, and the atomic proposition d; is true when the i-th process is dclayed waiting to enter its critical
region. A typical requirement for such a system is that a process waiting to enter its critical region will
eventually do so. This condition is casily cxpressed in ICTL" by the formula /\.\G(d,-: AFe). The
results of [Clarke ¢t al 86b] can be used to show that exactly the same IcTL R;rmulas hold in a network
with 1000 processes as hold in a network with two processes. The EMC algorithm can be used to check
automatically that the above formula holds in networks of size¥wo and conclude that it will also held in
networks of size 1000. At present this methodology has only been partially automated, however. The
bisimulation must be established by hand and this generally requires some represencaiion of the farger
Kripke structure. Scveral rescarchers are attempting to find a way of automating this phase in a manger

that avoids building the larger Kripke structure.

Other techniques for avoiding the state explosion problem are being investigaied by Kurshan and
Wolper. In Kurshan's system [Kurshan 85] this problem is handled by using a homomorphisin 0

collapse a large state machine into a much smaller one while prescrving those propertics that are

unpottant for verification. Since Kurshan does not use temporal logic formulas for
no analogue of the indexed formulas or of the bisimulation theorem used in [Clarke et al 86b]. Welper
[Wolper 86] considers a logic somewhat like [CTL" for reasoning about programs that are d.ta-
independent; however, his indexed variables range over data elements, not over processes. Also, there
is no notion of correspondence between structures in his work. Some ultimate limitations on this type of

reasoning are discussed in Apt and Kozen [Apt & Kozen 86).

s

PP AR ey)

' 2 e B 2% BN A)

v e
AR

‘e AP ¥ v o8 S L el . 7,
. « " ‘A.'.'.

o

'4' ‘.- Sy

S 4

-y

i ’
"
o
py)
[)
v"
"
, References
~
LS
';'\ [Apt & Kozen 86] K. Aptand D. Kovzen. [Limits for Automatic Verification of Finite-State Concurrent
Systems, Inf Process. Lett. 22(6):307-309, 1986.
-\.:
o
NI
:: [Bartlet et al 69] K.A. Bartlet, R.A. Scantlebury, Pl Wilkinson. A Note on Reliable Full-Duplex
L >
R Transmission over Half-Duplex Links. Communications of the AC M 12(5):260-261, 1969,
:;:
e [Ben-Ari ct al 83) M. Ben-Ari, Z. Manna. A. Paculi. The Temporal .ogic of Branching Time. Actu
o
LY Informatica (20):207-226, 1983.
g
)
N [Bochmann 82] G. V. Bochmann. Hardwarce Spccification with Temporal Logic: An Example. /ELE
)
] Transactions on Computers C-31(3), March, 1982.
PLA
R
. [Browne 86] M. C. Browne. An [mproved Algorithm for the Automatic Verification of Finite State
.: Systems using Temporal Logic. [n Proceedings of the 1986 Conference on Logic in Computer Scierce.,
) pages 260-267. Cambridge, Massuchusetts, June, 1986.
Q]
> [Browne & Clarke 86] M. C. Browne, E. M. Clarke. SML: A high level language tor the design and
verification of Finite State Machines, In [FIP WG 10.2 International Working Conference from HDL
! Descriptions to Guuranteed Currect Circuit Designs, Grenoble, France.. 1FIP, Scptemiber, 1986.
d
#
l
[Browne ctal 85] M. C. Browne, E. M. Clarke, D). Ihll. Checking the Correctnness of Sequential
.- Circuits. In Proceedings of the 1935 International Conference on Computer Design. 1EEE, Port Chester,
[}
:' New York. October, 1985.
:-
)
-
]
J

........ et A m A e P s e m e e
A s e A i A R TR AR,

.« - .
.....

B 3 o At 1 [y o A 3 Y. 4ia A% an 3. ata aba a®, B ale, - gt A, ¢ . < Pl bak v g 0 [Naf '.
e
o~
\-d‘
23 :':
o
o
[{Browne et al 86} M. Browne, E. Clarke, D. Dill, B. Mishra. Automatic Verification of Sequential «
o
Circuits using Temporal Logic. [EEE Transactions on Computers C-35(12), December, 1986. X
N
'
’ <
[Browne et al 6b] M. C. Browne, E. M. Clarke, and D. Dill. Automatic Circuit Verification Using '
Temporal Logic: Two New Examples. G.J. Milne and P.A. Subrahmanyum (cditors). Furmal Aspects ‘;.'.'-
of VLSI Design. Elsevier Science Publishers (North Holland). 1986b. \I
[Clarke & Emerson 81] E.M. Clarke, F.A. Finerson. Synthesis of Synchronization Skeletons for '-::
Branching Time Temporal Logic. [n Proc. of the Warkshop on Logic of Programs. Springer-Verlag, -]
Yorktown Heights, NY, 1981
[Clarke et al 86a] E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications. ACM Transactions on Programming ,,
Languages und Systems 3(2):244-263, 1986, 7
o
e
7
[Clarke et al 86b] E. M. Clarke, O. Grumberg, M. C. Browne. Rcasoning about Networks with many (
idcntical finite-state processes. In Proccedings of the Fifth Annual ACM Symposium on Principles of ,
2
Distributed Computing., pages 240-248. ACM, August, 1986. o
~
-.\
N
[Dijkstra 85] E. Dijkstra. Invariance and non-determinacy. In C.A.R. Hoare And J.C.Shepherdson -
(editors), Mathematical Logic and Programming [.anguages, pages 157-163. Prentice-Hall, 198S.)
[Dill 86] D. Dill. A Trace Theoretic Approach to Asynchronous Circuit Verification. Workshop on ~
Design and Implementation of Concurrent programs,Groningen, The Netherlands, November 17-21. R
1986
l." X
]
o
o+
r“ .
by
:w‘
-
el u‘ f ‘ . - . “.a!.!. _‘ '-I'.: y . ‘ Ay f N '-' ' ' ; "‘—‘vf'.-‘--«‘ -F;'.'." .: s ?._ '.;(:-': ,!':_-f:"-F:"",\n\’:-'-h ::q"-'t'--".'-(' f

¢

TG

o |

[X

e e e

Y

\ { WY
.‘\‘,.l‘. \“ » Q'!.\‘.‘I‘..Q A M

[Dill & Clarke 86] David L. Dill and Edmund M. Clarke. Automatic Verification of Asynchronous

Circuits using Temporal Logic. IEE Proceedings 133, pt. E(5), September, 1986.

[Emerson & Clarke 81] E.A. Emerson and E.M. Clarke. Characterizing Properties of Paralicl Programs
as Fixpoints. In Springer Lecture Notes in Computer Science. Volume 85: Proc. of the Seventh

International Colloquiumm on Awtomata, I.anguages and Programming. Springer Verlag, 1981,

[Fmerson & Halpern 83) E.A. Emerson, J.Y. Halpern. ""Sometimes™ and "Not Never” Revisited: On

Branching versus Lincar Time". In Proc. 10th ACM Symp. on Principles of Progranuning Languages.

1983.

[Emcrson & Lei 85] E.A. Emerson, Chin Laung Lei. Modalities for Model Checking: Branching Time

Strikes Back. Twelfth Symposiunt on Principles of Programming Languages, New Orleans, La. , January,

1985.

[Francez 86] N. Francez. Fairness. Springer Verlag, 1986.

[Gabbay ct al 80] ID. Gabbay,,A. Pnculi, S. Shelah, and J. Stavi, The Temporal Analysis of Fairness. 7th

ACM Symposium on Principles of Programming [.anguages. :164-173, January, 1980,

{Hoare 78} C.A.R. Hoare. Comununicating Sequential Processes . Cortrnunicativns of the ACM 21(8),

August, 1978.

[Hughes & Creswell 77) G.E. Hughces and M.J. Creswell. An Introduction to Modal Logic. Mcthuen

and Co., 1977.

AN

Faon NN

v 3‘\." % \." VAR AR .‘ y Y “ DRI ":'\:‘.'v)".':‘:':‘..'.-"\:'\-":':"'. - ~ -
0. Y. At A " n A

L N
L I
-

LY

. N
g

o -f"J‘

e Y

25

[Kurshan 85] R.P. Kurshan, Modelling Concurrent Processes. In Proc. of Symposia in Applied

Mathematics. 1985S.

[Kurshan 86] R.P. Kurshan. Testing Containment of w-Regular [.anguages. Technical Report

1121-861010-33-TM, Bell Laboratories Technical Memorandum, 1986.

[Lamport 80] L.. LLamport. "Sometimes” is Sometimes "Not Never”. [n Seventh Annual ACM
Symposium on Principles of Programming [.anguages, pages 174-185. Association for Computing

Machinery, Las Vegas, January, 1980.

[Lehimann et al 81} D. Lehmann, A, Pneuli, J. Stavi. Impartiality, Justice, and Fairness: The Ethics of

Concurrent Termination. Automata, Languages, and Programming, Springer Verlag LNCS 115, 1981.

[Lichtenstein & Pnueli 85] O. Lichtenstein and A. Pnucli. Checking that Finite State Concurrent
Programs Satisfy Their Linear Specification. In Conference Record of the Twelth Annual ACM

Symposium on Principles of Progranuning Languages. New Orleans, La, January, 1985.

[Malachi & Owicki 81] Y. Malachi and S. S. Owicki. Temporal Specifications of Self-Timed Systems.

In H.I. Kung, Bob Sproull, and G. Stecle (cditors), VLSI Systems and Computations. 1981

[Martin 85] A. Martin. The Design of a Self~Tiined Citcuit fur Disuibuted Maiual Exclusion. In

Henry Fuchs (editor), Proc. 1985 Chapel 11ill Conf. on VLS, pages 247-260. 1985S.

[Milner 79] R. Milner. [l.ecture Notes in Computer Science. Volume 92: A Calculus of Communicating

Systems. Springcr-Verlag, 1979.

'y ."'4" 4‘,.
PSR

k]
2, » .
q’.._w"' P

g f‘ P
XX

A A I L Py
mF_A\._A'.'.LT.A*.'i Wy

TR

LR S

26

[Mishra & Clarke 85] B. Mishra, E.M. Clarke. Hierarchical Verification of Asynchronous Circuits using

Temporal Logic. Theoretical Computer Science 38:269-291, 1985.

[Owicki & Lamport 82} S. Owicki, [.. Lamport. Proving Liveness Properties of Concurrcat Programs.

ACM Transactions on Programming I.anguages and Systems 4(3).455-495, July, 1982

[Pnculi 77] A. Pneuli. The Temporal Semantics of Concurrent Programs. In /8th Sy inposium on

Foundations of Computer Science. 1977.

[Quielle & Sifakis 81] J.P. Quielle, J. Sifakis. "Specification and Verification of Concurrent Systems in

CESAR". In Proc. of the Fifth International Symposium in Programming. 1981.

[Quielle & Sifakis 82] J.P. Quiclle, J. Sifakis. Fairness and Related Properties in Transition Systems.

IMAG (292), March, 1982.

[Scitz 80] C.Seitz. System Timing. {nroduction to VI.S! Systems (C. Mead and L.Conv.ay). Reading,

MA, Addison-Wesley, 1980.

[Sista & Clarke 86) A.P. Sistla, EM. Clarke, Complexity of Propositional Temporal Logics. Journai of

the Association for Computing Machinery 32(3):733-749, J uly, 1986.

[Vardi & Wolper 86] M. Vardi and P. Wolper. An Automata-Theorctic Approach to Automatic
Program Verification. In Proceedings of the Conference on Logic in Computer Science. Boston, Mass.,

June, 1986.

[Wolpcr 86] P. Wolper. Expressing Intercsting Propertics of Programs in Propositional Temporal

Logic. In Thirteenth ACM Symposium on Principles of Programming l.unguages. 1986.

- - . .
g \f\'."' \ -.‘-‘-h N d
Nl all N

A A g e
>, ".h_s.‘-_".&."@'.‘.ri‘,\.‘.‘nlh'd

L >

-

N — -

.
.
-
.
.
L)
1)

A W)

MO-A188 618 RESEARCH ON NTOMT!C VERIFICRTIN OF FINITE-
CONCURRENT SYSTEMS. . CARNEG Ty BITTS

PA DEPT OF COMPUTER SCIENCE
UNCLRSSIFIED CN—CS-O?-i.S AFNAL-TR-87-1166

JIE-MELLON UNIV PITTSMUI

R N S R I Bl L2 R L L L S) T B A S R R X GO O O S Y TS T Y T P

Mo ... e f' 3
e e o

'10

B £ i o

e I
=2 s s ;

-

o

R R R

N LA l,-l-{‘l Pt

""l"
PN .

rer

-

)

) v - - v @ - - - W ")
AL AT (Lt W A e e T i

M \M\f\f\w\.'\- “\.r\(-:‘.-\ I N N AT NN AN

5 “ Py) ‘.‘ AN e o o -.'..'.. ». '..:’.--,\’-,(A"l._f“i‘.':‘.‘

e Y ?.-.-‘.' AN N AT ACA AL A |

R \ ey IR I W e 'f\f:"?-'.-'".'"" St o]

PHOTOGRAPH THIS SHEET

ATLIIICR]

LEVEL INVENTORY

WL L, L
L 5y

AFWAL-TR-87-// 46

DOCUMENT IDENTIFICATION

Dec 1957

Tnis dechmeat hus bees apjroved
t 27 pullie rclose and sele 8 |
’ é" 'mm" '.Y‘”l”“-v

2

re L

Ty

AD-A188 618

:.",

o

Y o s o s e h e A

VALY

DISTRIBUTION STATEMENT

YN N YT Sy

ACCESSION FOR

— 4
NTIS GRA&I
DTIC TAB

UNANNOUNCED

2y,
l'.r

.
's ‘2

.,
-
Q

"y

JUSTIFICATION

S

-

Ly

-

LRt It} s
SN S)

—

BY
DISTRIBUTION / an E

AVAILABILITY CODES N
bisr AVAIL AND/OR SPECIAL

DATE ACCESSIONED

A-l

DiSTRIBUTION STAMP @

DATE RETURNED o

DATL RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC

e 5T
TS
, 4 .

' '.1. I:‘l

DTIC form 704 DOCUMENT PROCESSING SHEET PRUVIOUS L OITION MAY G UStD DN

~

g,

e AT WL YECT R N e PR R P (O S S T s S PR R R B R R P TR R S 0 4
b Ve U BIN,Y ! 8 2 TR NS B RERT AT W TN R W R AT LR M G WY

W0, h

.

g8 + 4. [iAW 5 LN L » \J P L) iab kg W ¢ " e ak 3 P \ W ‘gt cab T UN oa B8 ¥

AFWAL-TR-87-1166

RESEARCH ON AUTOMATIC VERIFICATION OF FINITE-~STATE
CONCURRENT SYSTEMS

E.M. Clarke and 0. Grumberg

Carnegie-Mellon University
Computer Science Department
Pittsburgh, PA 15213-3890 '

AD-A188 618

December 1987

Interim

Approved for Public Release; Distribution is Unlimited

i T T g

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND y
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

Fwy .]

T N R T I P O LY T R R R R R R S L RO P LG & T S RIS W VW e, et
DTN M I N M I J N N N NN SN AN e e e e e e T e e e e

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than 1in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obliqation whatsoever, The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licersing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Crih A k) Brdlp £

CHAHIRA M., HOPPER 4 RICHARD C. JONES . ¥ ' '
Project Engineer Ch, Advanced Systems Research Gp
Information Processing Technology Br

FOR THE COMMANDER

el P A I

EDWARD L. GLIATTI
Ch, Information Processing Technology Br
Systems Avicnics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer emploved by your organization please

notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-g543 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security corsiderations, contractual obligations, or notice on a specific
document.

------- - = -

e %" P T T S R AT T T, Vi P P S T PR L P S P L T A N PAE Sl - . Vel W il W
g .".f.r P B) e .«-_"."'.r_.f.' S A N R R N N L N A A NN A .-"'-r.r BN N

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

ta REPORT SECURITY CLASSIFICATION
Unclassified

ib RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU-CS-87-105

5 MONITORING ORGANIZATION REPORY NUMBERI(S)
AFWAL-TR-87-1166

6a. NAME OF PERFORMING ORGANIZATION
Carnegie~Mellon University

6b OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION
Air Force Wright Aeronautical Laboratories
AFWAL/AAAT-3

6¢. ADDRESS (City, State, and ZIP Code)
Computer Science Dept
Pittsburgh PA 15213-3890

7b ADDRESS (City, State, and ZIP Code)
Wright-Patterson AFB OH 45433-6543

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F33615-84-K-1520

8c. ADDRESS (City, State, and ZIP Code)

10 SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO

01

PROGRAM PROJECT
ELEMENT NO NO

61101E 4976

TASK
NO

00

1. TITLE (Include Security Classification)

Research On Automatic Verification Of Finite-

State Concurrent Systems

12. PERSONAL AUTHOR(S)

E. M. Clarke, 0. Grumberg

13a. TYPE OF REPORT
Interim

13b TIME COVERED
FROM

T0

'S PAGE COUNT
31

14 DATE OF REPORT (Year Month, Day)
1987 December

16. SUPPLEMENTARY NOTATION

COSATI CODES

GROUP SUB-GROUP

18 SUBIECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20 OISTRIBUTION : AVAILABILITY OF ABSTRACT

£ uncLasSIFIED/UNLIMITED [O saMe AS RPT) oTic USERS

27 ABSTRACTY SECURITY CLASSFICATION

223 NAME OF RESPONSIBLE INDIVIDUAL
Chahira M. Hopper

TN BB EEE Ao 00 IRRIALT AAKES

DO Form 1473, JUN 86

Previous editions are obsolete

SECURITY CLASSIFCATON OF "~ S FaGE_
Unclassified

J 3
| :
! Ly
A Y
~
-
~»
\
Table of Contents
1. Introduction 1
2. Computation Tree Logics 3
. 3. The CTL Model Checking Algorithm 5
4. Fairness Constraints 7 s,
5. An Examnple 9
6. Othcr Approaches 13 .
7. Applications 16 i
8. Conclusion 19 .
(W
o
.
Y,
.
h)
LS
by
&
&
- 4
o]
o
N
>
K,
-
;
W
\'
~
N~
“
v A}
h

Tty

S leabatd!

o

sl

TN IT 2y

e

R AR

-
b

o

o

List of Figures
Figure 5-1: Two process mutual exclusion program.
Figure 5-2: Transcript of model checker cxccution (without fairness constraint).
Figure 5-3: Transcript of model checker execution (with fairness constraint).
Figure 7-1: Algorithim For Constructing Kripke Structure From Circuit
Figure 7-2: Krikpe structure for unstable configuration of AND gate.

11
12
12
17
18

‘o
\
: s
.‘
Research On Automatic Verification _
Of Finite-State Concurrent Systems g
.
‘ :
E. M. Clarke and O. Griimberg '
Carncgic Mcilon University, Pittsburgh "
-
1. Introduction !
Temporal logics were first devcloped by philosophers for reasoning about the ordering of cvents in g
time without introducing time explicitly [FHughes & Creswell 77]. Although a number of diiicrent :
temporal logics have been studied, most have an opcerator like G(f) that is true in the present if fis :E
always true in the futurc (Le, if fis globally true). To asscrt that two events e, and e, never occur at the .
same time, onc would write G(—ev-e). Temporal logics are often classified according to whether
time is assumed to have a linear or a branching structure. This classification may occasionally be '
mislcading since some temporal logics combine both linear-time and branching-time operators. ’
Instead, we will adopt the approach used in [Emerson & Halpern 83] that permits both types of logics to -
be treated within a single semantical framework. In this paperthe meanirg of a temporal logic fornnula p
will always be detenmined with respect to a labelled state transition graph; for historical rcasons such i:
structures arc called Kripke models [Hughes & Creswell 77). 2 X
R
Pnueli was apparently the first person to use temporal logic for specifying and venfying concurrent b
programs {Pnculi 77]. His approach involved proving desired propertics of the program under
consideration from a set of program axioms that described the behavior of the individual statements in
the program. Proofs were usually constructed by hand, and this task was in general quite tedious, Since _\
many concurrent programs can be viewed as communicating finite state machincs, there was a strong
possibility that at least some of these programs could be automatically ventied. 'Lhe tirst veritication -
technique (o exploit this observation was the CT/. model checking procedure developed by Clarke and ‘~
Einerson in {Clarke & Emerson 81]. Their algorithm was polynomial in both the size of the model
determinced by the program under consideration and in the length of its specification in temporal logic. '1‘
They also showed how fairness [Gabbay et «! 80] could be handled without changing the complexity of '
-their algorithm, Handling fairness was an important step since the correctness of many concurrent :'.:
%
This resench was pamlly supported by NSE Grant MO S-82-16706 The seeond atdior, O Grumberp s evirrenily o leave .:
from Cechnion, Bl and s panudly wpported by a Weremann postdoctorai iclfowship :._
Y
2
@
X

- _ -

N

T R N g Ty

R N DA AR
'I‘-"I'I\I"

P A T NA AN

algorithms depends critically on some assumption of this type: for example, absence of starvation in a
mutual exclusion algorithm may depend on the assumption that cach process makes progress infinitely

often.

At roughly the same time Quielle and Sifakis [Quiclle & Sifakis 81] gave a model checking algorithm
for a similar branching-time logic, but they did not analyze its complexity or show how te handlc an
interesting notion of fairness. Later Clarke, Emerson, and Sistla [Clarke et al 862} devised an improved
algorithm that was linear in the product of the length of the fonnula and in the size of the global state
graph. Sisda and Clarke {Sistla & Clarke 86] analyzed the model checking problem for a varicty of other
temporal logics and showed, in particular, that for lincar temporal logic the problem was PSPACE

complete.

A number of papers have shown how the temporal logic model checking procedure can be used for
verifying network protocols and sequential circuits ({Clarke et al 86a], [Mishra & Clarke 85], (Browne et
al 86), [Dill & Clarke 86], [Browne et al 85], [Browne & Clarke 86}, [Browne et al 6b]). In the casc of
sequeatial circuits two approaches have been developed for obtaining state transition graphs to analyze.
The first approach extracts a state graph directly from the circuit under an appropriate timing model of
circuit behavior. The second approach ubtains a state transition graph by compilation from a high level
representation of the circuit in a Pascal-like programming language. In practice the model checking
procedure is able to check state transition graphs at a rate of 100 states per sccond for formulas of
reasonable length. [t has been used successfully to find previously unknown crrors in published designs

of asynchronous circuits.

Alternative approaches have been proposed by a number of other rescarchers. The approach uscd by
Kurshan [Kurshan 86] involves checking inclusion between two automata on infinite tapes. The first
machine represents the system that is being verified; the second represents its specification. Automata
on infinite tapes arc used in order to handle fairness. Pnucli and Lichtenstein [Lichtenstein & Pnucli
85] reanalyzed the complexity of checking lincar-time formulas and discovered that although the
complexity appears exponential in the length of the formula, it is linear in the sisc of the global state
graph. Based on this observation, they argued that the high complexity of lincar-time model checking
might still be acceptable for short formulas. Emerson and Lei [Emerson & Lei 85 extended their result
to show that formulas of the logic CTL® which combines buth branching-time and lincar-tine
operators, could he checked with essentially the same complexity as formulas of lincar temporal logic.
Vardi and Wolper have recently [Vardi & Wolper 8] shown how the model checking problem can be

formulated in terms of automata. thus relaung the model checking approad o the work of Kuishan.

Although the model checking procedure discussed in this paper has alrcady becn used to discover

some surprising errors in non-trivial programs, more work still remains to be done. Certainly the most
scrious problem is the state explosion problem. In analyzing a system of V processes. the number of
states in the global state graph may grow exponcentially with V. Recent research indicates, however,
that it may be possible to avoid this problem in some important cascs. For instance, techniques
developed in [Clarke ct al 86b) may reduce the size of the state graph that needs to be searched when
many of the processes arc identical. It may also be possible to exploit the hierarchical structure of a
complex concurrent program in order to reduce the number of states that need to be considered at any

one level of abstraction [Mishra & Clarke 85}

This survey is organized as follows: Scction 2 describes the syntax and semantics of the temporal
logics that are used in this paper. In Section 3 we state the model checking problesmt and give an efficient
algorithm for checking simple branching-time formulas. In Scction 4 we discuss the issue of fairness
and show how the algorithm of Section 3 can be extended to include fairness constraints. Section S
demonstrates how the model checking algorithm can be used to debug a simple mutual exclusion
program. In Scction 6 we describc some alternative approaches for verifying systems of finite state
concurrent processes. We analyze the complexity of checking ®near temporal logic tormulas and outline
the techniques of Pnucti and Lichtenstein [Lichtenstein & Pnucli 85} and Vardi and Wolper [Vardi &
Wolper 86).Additional applications to circuit and protocol veritication are discussed in Scction 7. ‘The
paper concludes in Section 8 with a discussion of some of the important remaining rescarch problems

like the state explusion problem.

2. Computation Tree Logics

In this paper finite state programs are modclled by labelled state-transition graphs, called Kripke
structures [flughes & Creswell 77). If some state is designated as the inirial state, then the Kripke
structure can be unwound into an infinite trec with that state as the root. Since paths in e tree
represent possible computations of the programm, we will reter to the infinite tree obtained we this
manner as the computation tree of the program. Temporal logics may dificr according to how they
handle branching in the underlying computation tree. In lincar temporal logic. operators are prosided
for describing events along a single computation path. ln a branching-time logic the temporal operators
quantify over the paths that are possible tfrom a given state. The computation tree logic C11 :
([Emerson & Clarke 81}, [Emerson & Hatpern $3), [Clarke ¢t al 364]) combines both branching-tune
and lincar-time eperators; a path quantifier, either A ("tor all computation pahs™) or {7 or wne

computation path™) can pretican assertion composed of arbitrary combinations o the asual hive o tine

"1':'-'."‘/-".

Py 'f ‘A

' “'l.‘ .(3

]
.

o iy g

Cale - [y ol 1ol ¥ vl W W ;
ey v gav . 3 IR R TR T Wy A Al Uk %o A A . B RO LV LN

operators G ("always”), F ("somctimes”). X ("nextume”). and U ("until”). The remainder of this

scction gives a precise description of the syntax and scmantics of these logics.

.-
There are two types of formulas in CTI. : state formulas (which are true in a specific state) and path

Jormulas (which arc true along a specific path). Let AP be the sct of atomic proposition names. Asstate

formula is either:

o A if Ac AP.

o If fand g arc state formulas, then — fand f Vv g are statc formulas.

o If fis a path formula, then F(/) is a state formula.
A path formula is either:
o A state formula.

o If fand g are path formulas, then = f, fv g, X f and fU g are path formulas.
CTL" is the set of state formulas generated by the above rules.

CTL ({Ben-Ari et al 83), [Clarke & Emerson 81]) is a restricted subset of CTL" that permits only
branching-time operators--each path quantifier must be immediately followed by exacty one of the
operators G, F, X, or U. More precisely, CTL is the subset of CTL" that is obtained if the path formulas

are restricted as follows:

o If fand g are state formulas, then X fand fU g are path formulas.
o If fis a path formula, thensois - f.

Linear tertporal logic (LTL), on the other hand, will consist of formulas that have the form A f where
Sfis a path formula in which the only state subformulas that are permitted are atomic propositions.
More formally, a path formula is either

e An atomic proposition

o If fand g are path formulas, then —f, f Vv g, X f and fU g are path formulas.

We define the semantics of CTL® with respect to a structure M =<S§, R, L>, where

e Sis a set of states.

e RC SxS is the transition relation, which must be total. We write s, — s, to indicate that
(s,8)€R.

o L. S—P(AP) is a function that labels each state with a set of atomic propositions true in
that state.

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We define a path in M 10 be a sequence of states. # = ,.5,.. .. such that for every i20, 5;— s n’

t+1°

will denote the suffix of 7 starting at s;.

We usc the standard notation to indicate that a state formula f holds in a swucture: 3/,5= f mecans
that f holds at state s in structure M. Simularly, if £ is a path formula, VM, 7 B=f means that f holds
along path m in structure M. The relation = s defined inductisely as follows (assuming that £, and £,

are state formulas and ¢, and g, are path formulas):

l.sk= A = Adel(s).

2. skE=f = skaf.

lsk=fVA = skE=forsk= /.

4. s=F(g) = there exists a path # starting with ssuch that w =g,

S.me=f = sis the first state of w and sk=f].

6. m =g = mwheg.

T.nFg Ve = nkFgornkEg,

8. mk=Xg, = a'k=g.

9.mk=g Ug, = there cxists o & > 0 such that wkr=_qz and forall0gj<k, 7'E= g

We will also use the following abbreviations in writing cr.’ (CTL and 1.'TL) formulas:

e fAg= ~(=fVp oFf = true Uf

e A(f) = ~E(=f) o Gf = -F~f.

In ([Lamport 80], [Emerson & Halpern 83]) it is shown that the three logics discussed in this scetion
have diffcrent expressive powers. For example, there is no CTL formula that s cquivalent to the LTL
formula A(FGp). likewise, there is no LI1. formula that is equivalent to the CTL formula
AG(EF p). The disjunction of these two formulas A(FG p)Vv AG(EFp)isa CTL" formula that is not
expressible in cither CIL or LTL.

3. The CTL Model Checking Algorithm

Tet M =(S5 R 1) beafinite Kripke structuie. JAssume that we want to determine which states m S

satisfy the CTL formula . We will design cur algornthin to operate i stagos: The st staze processes

all subformulas of £ of lenath 1 the second stage processes all subtormueda. o feneth 2and <o oo At

T
Valaw N

lo

N

.
2

ot

v
TR

fy

NN EXRAI

*s
i 8

. o
/
a s
A . 8y

AN

T4

.
W s e

- sy r
[L

the end of the i stage, each state will be labeled with the set of all subformulas of length less than or

equal to i that are truc in the state. We let the expression lubel(s) denote this set for state s, When the
| algorithm terminates at the cnd of stage n = length(f)), we sce that for all states and for all
subformulas fof £, M.s = fiff fe lubel(s) .

Obscrve that AX can be expressed in terms of EX and that AU can be expressed in terms of EU and
EG:
AXf = kX o

AL U= ~(F[=AUAA =]V EG(=1)).

‘T hus, for the stage 7 algorithm it is sutficient to be able (0 handle six cases, depending on whether fis

atomic or has one of the following forms: —f,, £V £, EXf, E[fUf] or EGf.
We will only consider the last two cases, since the others are straightforward.

"o handle formulas of the form f= E[f, U£] we first find all of those states that arc labeled with £.
We then work backwards using the converse of the transition selation R and find 4l of those states that
can be reached by a path in which cach state is labeled with f]. All such states should be labeled with /.

This step requires ime O(| S|+ R]).
The case in which f= FG £ is slightly more complicated and depends on the following observation,

Lemma 1: Let 3’ be obtained from Af by deleting from S all of those states at which £ does not
hold and restricting R and L accordingly. Thus, M’ =(S’. R’ L") where §’ = {s¢S|Msk=L£},
R’ = R|g/xg’.and L’ = L]|gs. Then Ms = EG/ iff the following two conditions are <atisticd:

l.5¢S’

2. there cxists a path in 87 that leads from s to some node fin a non-trivia! strongly connected
uomp()nent2 ot the graph (S’.R").

Proof: Assumc that Ms k= FGf. Clearly se 7. [.ct @ bean infinte path starung at s such that £
hulds atcach state on . Since Mis tinte, 1t must be possible to write 7 as 7 = 7 7. where 7054

fnite inttial segment and o, is anandinite suthix of 7 with the property hat coch sade o 7. oo

y
N otrone o PN . o

‘.{ufmb ~ A.J. Al ‘_{A_ A s '_.A-’\ »\.LL"A.',,;. O T U P L T A S Ny T A TR S K, Sy

infinitely often. Obviously =, is contained in S’ . Let C be the set of states in #,. C is a nontrivial
strongly connected component of S' . 'To see this, let 5, and 5, be states in C. Pick some instance of s,
on .. By the way in which =, was sclected, we know that there is an instance of 5, further along ..
The scgment from s, to s, lics entirely within C and hence within S, This segincnt is a finite path

from s, to 5, in S’ . Thus, both condition (1) and condition (2) are satisfied.

Next, assume that conditions (1) and (2) are satisficd. Let a, be the path from sto 1. et 7, bca
finite path of length at [cast one that leads from ¢ back to ¢, lhe existence of m, 18 guaranteed since € 18
a non-trivial strongly connected component. All of the states on the infinite path 7 = 7 7. satisty f.

Since 7 is also a possible path stuting at sin M, wesec that Ms = EGS. O

The algorithm for the case of f= EG f follows directly from the lemma. W< construct the restricted
Kripke structure M’ = (8, R’, L’) as described in the statement of the lemma. We partition the
graph (S, R’) into suwongly connected components and find those states that belong to nontrivial
components. We then work backwards using the converse of R and find all of thosc states that can be

rcached by a path in which each state is labeled with f. This step also requires time O(} S| + | R]).

[n order to handle an arbitrary CTL formula £, we successively apply the state labcling algorithm to
the subformulas of f), starting with the shortest, most deeply nested and work outward t inctude alt of
Jo- Since cach pass takes time O(| S|+ | R|) and since £, has length(f;) dilferent subformulas, the
entire algorithm requires O(length(£))-(| S| + | R|)).

Theorem 2: There is an algorithm for determining whether a CTLL formula £} is true in state s of the
structure M = (S, R, L) that runs in time O(length(f,)- (| S| + [R})).

4. Fairness Constraints
In verifying concurrent systems, we are occasionally interested only in correctness along fair
execution sequences. For example, with a system of concurrent processes we may wish to consider only
those computation sequences in which cach process is exccuted infinitely often. When deaking with
network protocols where processes communicate over an imperfect (or lossy) channel we may also wish)
to restrict the sct of computation sequences; in this case the wnfair exccution sequences are these in
which a sender process continuously transmirs messages witheut any reaching the receiver die to erratic

hehavior by the channel.

Rou by speakine o Cieness condition assetts that reguests forserviee are o ted ™ affio et ogr

p O T I e NN g o T O A A T

o g 43 el gt sg 4on gl in g T Y O R ey

X
'
;a
o 8
b
4
i
Different concepts of what constitutes a “request” and what “sufficiently often” should mean give rise
' to a varicty of notions of fairness. Indeed, many different types of fuirness and approaches to dealing
with them have been proposed in the literature; we refer the reader to [Gabbay et at §0]. [1 amport 80].
} [Quiclle & Sifakis 82], and {[.chmann ct al 81} for more extensive treatments. The text by Francez
[Francez 86] also gives an excellent survey of the various ¢ pes of fairness.
In this scction we will show how to extend the CUL model checking algorithm o handle a simple but
' fundaniental ty pe of tairness in which cetain predicates must hold intintely often along every tur path.
([Clarke ot al 86a] shows how to handle a richer class of fuirness constraints.) In this case it fellows froun
:; [Fmerson & Halpern 83] that correctness of fair executions cannot be expressed in CLL.
v
N In order to handle fairness and stll obtain an efficient model checking algorithm we modify the
! semantics of CI'L. The new logic, which we call CTLL F has the same syntax as CUL. But 4 structurc 1§
\ now a 4-tuple M = (S, R, L, F) where S, R, /. have the same meaning as in the case of CTL, and Fis a
i collection of predicates on S, FC 2. A path & is I-fair iff the following condition holds: for each
) G € F, there are infinitely many states on m which satisfy predicate (5. Cl LE has cxdactly the same
! semantics as CTL except that all path quantifiers range over fair paths. The first step in checking C (Lt
' formulas is to determing the fair strongly connccted componenis of the graph of VoA strongly conaceted
b componcat is fair if it contains at least onc state from cach setin F. Formally, let /' = {(r.. (f }hea
] collection of subscts of 5. A strongly connected component C of the graph of M s faer iff for cach ¢, 1n
? F tiere is astate 7, € (CN G)).
.
.'f Lemma 3: Given any finite structure M = (S. R. L, /') where F s a sct of fairness constraints and a
: state s, € 3. the following two conditions are equivalent:
L. There exists an £~fair path in 3/ starting at s,
N
: 2. There exists a fair strongly connected component ¢ of (the graph o) M such that there is a
o finite path from s to astate 1 € C.
: The proof is straightforward and is given m [Clarke et 86a]. We next extend our model checking
"‘ algorithm to CTL FWe introduce an additonal propesition 2, which s true at a stace itf there i< a tair
:E +path starting from that state. This can casily he done, by obtaining the strongly connected components
y of the graph associated with the structure and marking 3 cotnponant o s it contans Gt et one
K state from cach (7, in /7 By the above lemma cvery state i a tar strongl connecied companentis the
start of an infinite fair path. Phus, we label a state warth @ it there s path trrom that state 1o some
,
X

. - W e W -t B A N S i e SR S SN T AU L R S SRR S GRS A
V‘\.’ J\J“ wln e, :\ VA SN _\"."‘."\". AP SN SRR AN SN VT NN NN
A N b N . o . fi 0 -

8 N)

l E ”EIE !I!Illnlul lEltI!l!t““‘“”'{u”u aleialotalaralo byt afe AL Ak Al el At taloalotule €0

Rty de

e PR et M Mt T It

node of a fair strongly connected component. As usual we design the algorithm so that after it
terminates each state will be labeled with the subformulas of £ truc in that state. We consider the two
interesting cases where f is a subformuli of f; and cither f = F[AUf] or f = EGf,. We assume

that the states have already been Jabeled with the immediate subformulas of f by an carlicr stage of the
algorithm.

I.f=FLUf}: fistrucin astate iff the CTL. formula F[£ U (£, A Q)] is truc in that state,
and this can be determined using the CT1. model checker. Again, state sis labeled with fiff
s true in that state.

2. f= EG(f): To determine it s= LG (/) we use the procedure descrtbed in section 3
check sE=FG{f A Q) in the structure with the additional proposition Q.

[t is casy to sce that the above algorithm runs in time O(length(f)- (| S] + [R1)).

Theorem 4: Therce is an algorithm for determining whether a CTLF formula £, is true in state s of the
structure M = (S, R, L, F) with F as the set of fairncss constraints that runs in time
Olength(£)-(| S| + | R])).

5. An Example

In this section we illustrate how the modcl checker can be used to verify a simple, but not entirely
trivial, concurrent program. The example is a two process mutual exclusion program that was m.nually
proved correct using lincar temporal logic by Owicki and Lampert in [Owicki & Lamport 32]. The
program, cxpressed in a variant of the CSP progrinming language [Hoare 73], is shown in Figure 5-1.
In this version of CSP processes may have global variables (¢.g. p/ and p2), and assignments to such
variables are assumcd to be atomic. Since our verification technique can only be used to analyze tinite
statc concurrent systems, we require that all varjables be boolean and that all messages hetween
processes be signals. Labels (e.g. NC/ and NC) are used to indicate that flow of control hag reached a
particular point in some process. In our cxample there are two processes S7 and $2. and cach process
has three code regions: a noncritical region NCi in which the process computes some data values that it
wishes to share with the other process, a trying region 71 in which the process cxecutes a pratecol to
obtain entry into the critical section, and a critical section CSi in which the process updates shared
variables. To prevent a race condition that might result in unpredictable values being assigned to the
shared variables, only onc process iy ailowed to be in its critical section at any civen tme. Note thiat the
two processes arc ditferent; hence this is not a symmerrie solution to the mutual exclusion problem,
When the CSP program is compiled a state graph with 77 states is ebtaned. Mibiough this s 1ot an

extremely large state machine, 10 would nevertheless be gunie tedions o a human o debug,

AT

)

LAY S

oYy

s
oL

e o0
¢

S

-
x

14
1
7

« 77

1R A

G e

n

S WL

LA

fa

i@ .-,

PLOL A

- "'.
g Py

- L] . - - * - - . - a - - - - - - - - - -
A .4_.. . \".F_ e .- . \.~'.‘-.-.‘ o ._.l_'.f_.' . \'.'\('.".'\' CAy

o) ‘
"
A
L E
N
‘:" 10
‘y
Il
"g
N
G
We initially run the verifier without any fairness constraints--See Figure 5-2. We first check to see if
ty . o . s . .
j.:n both processes are ever in their critical regions at the same time. This property is succintly expressed by
‘g
the CTL. formula FF(CS1 A CS52). The veritier rapidly determinges that the formula is false--hence. the
!":. program does guarentee mutual exclusion. Time is measured in 1/60 of a sccond. The first component
measures uscer cpu time. The second component measures system cpu time. We next check for ahsence
[
. of dcadlock. ‘T'his is expressed by the formula AG (EF(CS1v CS2)). The verifier determinds that this
[l formula is satisfied: thus, from any state that is rcachable from the initial state it is always possible to get
W _
i:, to cither €S/ or CS2.
‘ Abscnce of starvation for process 1 1s cxpressed by the formula AG (71 — AF CS1). This property is
" not satisfied without a fairness constraint. The reason is quite simple. When we build the global state
Ll
: graph for the program we do not make any assumptions about the rclative speeds of the two processes.
N Thus, the sccond process can make any number of steps between steps of the first process. In fact, the
j second process can even run forever, thercby preventing the first process from cver making another
) step. We can rule out the sccond type of behavior by means of fairness constraints which require that
WY

each process be given a chance to exccute infinitely often. In Figure 5-3 we restart the verifier with
several fairness constraints that prevent cither process from remaining forcver at the same statement

while cnabled to make a step. Under these assumptions the first process will never starve. However, the

Ay Ay

possibility of starvation still exists for the sccond process.

‘-!
4
- A good soiution to the mutual exclusion problem should not require that processes alternate eniry
e, into their critical regions: CS1, €82, CS1, CS2,... . [n order to test that the algorithm giveu in Figure
2
- 5-1 does not require strict alternation, we check the formula
i AG(CS1 — A[CSLU(=CSIAA[-CSTUCS2HD.
-f This formula asserts that if process 1 enters its critical scction and subscquently leaves it, then it cannot
: cnter it again until process 2 has entered its critical section. The verifier determines that e formula is
_, falsc in less than a second. This example shows how the basic temporal operators, particularly the wnrnd
".: opcrator, can be nested to express complicated timing properties.
)
.
'f| Finally, the verificr has a counterexample feature (that is not shown in the transcripts). When this
¢
b feature is cnabled and the model checker determings that a tormala is false, it will attempt to find a path
2
ﬁ. in the state graph which demonstrates that the negation of the formula is true. For example. if the
§
L\ formula has the form AG(/), our system will produce a path o a4 swte in which =/ holds. For
i instance, when the verifier determines that the st tormula above is false, it prints out an exvecution of
’
]
¢
¥
4
)
g%
N

L% 3, "
WK N

Ny S

S5 a6 g b g8 ol RERART RN O B8 R 1 gah .0 a8 gat fat Rab . O POI RN PUI YU PON PO T) t Bt g8 4.t RO 0 Ty ""

¢
J
11 N
g
4
s o d
pl.p2: bool; -
NC1,NC2,T1,T2,72a,CS51,CS2: label; >
S$1,S2: process; b_
St ¢ [
pl := false; %
‘[.
true -> z
<<NC1>> skip; --noncritical section 1 "2
pl := true; I
<<Tl>> *[p2 -> skip]: Pee
<<CS1>> skip; =--critical section 1 Y
pl := false <
] ™~
] 4
I j
S2 :: [:M
p2 := false; -t
[o~
true -> /.
<<NC2>> skip; --noncritical section2 K
p2 := true; .
<<T2>> *[pl -> .f.
p2 := false; b
<<T2a>> *(pl -> skip J: ::
p2 := true w
)i «
<<CS2>> skip; --critical section 2
] p2 := false ”
] : 3

Figure 5-1: Two process mutual exclusion program.

>y
-

- - -

R

-

Y AT R PP T,

AN

CTL MODEIL. CHECKER (C version 2.5)

|= EF(CS1 & CS2).

The cquation is FAISE.

time: (24)

|= AG(EF(CS! | CS2)).
The equation is TRUE.

time: (42)

|= AG(T1-> AF CSI).
‘I'he cquation is FALSE.

time: (17 12)

Figure 5-2: Transcript of model checker execution (without fairness

Fairness constraint:
Fairness constraint:
Fairness constraint:
Fairness constraint;
Fairness constraint;
Fairness constraint;
Fairness constraint:

constraint).

~NCL.

~NC2.

~CSL.

~CS2.
~T1|P2.
~12{pl.
~T2| ~pl | T2a.

Fairness constraint: .

|= AG(T1-> AIF CS1).
The equation is TRUE.

time: (100)

|= AG(T2-> AF CS2).
The cquation is FALSE.

tme: (299)

= AG(CS1 -> A[CSL U (~CS1 & A[~CS1 U CS2))).

The equation is FAL SE.

time: (38 17)

Figure

‘.. \'(.;q-r‘ y .'_-r‘y,(a, : ,‘r._-r.'_.-_‘r,‘:\r,‘l- 'f.;r.;.vr.;.r,.f,\.-\.»_‘.r . f O a T q 0 ‘.(\n‘ W \ __ NN

5-3: Transcript of model checker execution (with fairness constraint),

13

the mutual exclusion program in which process 1 enters its critical region, leaves, and reenters without

process 2 cntering its critical scction in the meantime. This feature is quite useful for debugging
purposes.

6. Other Approaches

Several papers have considered the modcl checking problem for linear temporal lovwe fornfulas. 1t
M = (5. R 1) be a Kripke Structure with 5, € S.and let A fbe alincar temporal logic formuaia Thus,
fis a restricted path formula in which the only state subfonmulas are atoniic proposttions. We wish 1o

determine it M5, = AfL Notice that Ms B A S F My k= —E=f0 Consequently, ity suiiicient to be

able to check the truth of formulas of the form £/ where fis a restricted path tormuta. In general, this
problem is PSPACE-complete {Sistla & Clarke 86]. Although the proof of this PSPACEH-completeness
result is beyond the scope of our survey, it is casy to sce that the model checking problem is NP-hard
for formulas of the form E f where fis restricted path formula. We show that the directed Hamiltonian

path problem is reducible to the problem of determining whether M.skE= f where

o A is a finite structure,
e sis astate in M and
¢ fis the assertion (using atomic propositions p,

Fl¥p A ... AFp,AGlp — XG=p)A ... AGlp, = XG—p,)l.

Consider an arbitrary directed graph G = (V.) where V= {v. ..., vt We obtain a structure
from G by making proposition p; hold at node v, and false at all other nodes (for 1 <i<n), and by
adding a source node u; from which all v, are accessible (but not vice versa) and a sink node w, which

is accessible from all v, (but not vice versa). Formally, let the structure VM = (U 8. [)) consist of

L!

it

VU {u) where u eV,

=]
i

AUy, vy, € VYU {(v, w)fv, € PYU {(w0} and

L is an assignment of propositions to states such that

e pistrucin v for 1<ign

o pasfalsein v for 1<iysn, inj

o psfulseinu ., tor 1 <ign

12

r
e .

YEYAY

oy

LR AP

a0

‘y ‘s

CR I}

L3S

-

Aot N 4

PR

¢

1

e
DR

SRS

LT P4
BN

4y

AR

’ l' l. l,. l"

o
&
W
u 14
l"
lg‘
h
‘s
It is casy to sec that M.u, = fiff there is a directed infinite path in M starting at «, which goes through
;' all v, € ¥ exactly once and ends in the sclf loop though w,. Note that the formula fin the above
) construction has esscntially the same size as the as the graph (. Suppose that the length of the formula
E: to he checked was known to be much sinaller than the sive of the Kripke structure under consideration,
Would the complexity still be high in this case? A carcful analysis by [ichtenstein and Pouchi
v [Vichtenstein & Pnucli 85] showed that although the complexity is apparently exponential in the length
; of the formula, it is lincar in the size of the global state graph. We brietly describe their results below.
}
‘ [.et fbe a restricted path formula, The clusure of £ CHF) . is the smallest set of formulas containing £
; and satisfying:
L)
N o ~fi e CLLN)iff fie CL(S)
: eif [V £ CI(f). then £, £ e CI(f)
o if Xf, € CL(f), then f € CL(f)
oif =X f e CL(f). then X=f € CL(f)
' aif fUf ¢ CL(f), then £, £, XIfUS) € CI(f)
) It can be shown that the size of CI(f) is 5- lengtd f).
r, An atomis apair A = (s, Fy) with sgeS and F (S CL(SNJAP such that:
'
o for cach proposition Q € AP, Q € I'(\ff Q¢ [(s,)
o forcvery fie CL(f). fie F iff ~fieF,
| e forevery f. fi€ CLUS). fivfie Fyift fior fie Fy
’ o for every =Xf, € CL(f). =X/, € F 4 iff X=f ¢ F,
)
o forevery fi. 1€ CLIS). fUL e F iff fre " or fON[fLA] € 2y
\

Now, a graph G is constructed with the set of atwins as the set of vertices. (AB) 1s an edge of G aff
(s4 sg) € R and for every formula £, if Xf ¢y, then £ € Fpo An eventuai:ly sequence s annfinite
path 7 in G such that if fU£ e F, for some atom A on . then there exists an atom B, reacnable

from -t along o, such that ff e /g,

Lemma §: M. k= F /7 0ff there exists an eventuality scquence starting at an atom (s F) such that
fel

N 3% Wyt
s

P i T] ‘v\l
« 3% W' K

T T S T P T e S A N U I L I Y e e e cemaa e « . .
W S, > P A R N I RN o AN L P R I L I R A
Wl s §% Ty b.p f"'(.) < “ . [y Wiy R TR . .

T WA
A .l-

GG

XK

15

A non-trivial strongly connccted component C of the graph G is said to be self-fulfilling iff for cvery

atom A in Cand for every fUf; € £, there cxists an atom A in C such that /; € Fp.

Lemma 6: V.5 k= F fitf there exists an atom A = (5.) in ¢/ such that /¢ / and therc exists a path

in (7 from .1 to a selt-fulfilling strongly connected component.

I.emma 6 be used as the bass for a lincar teimporal logic model checking algentun, 1his Algorithm
has the time complexity O((1S] +|R])- 2 lers ‘n). Lichtenstein and Pauch turther showed how this
basic algorithm could be extended to handle a number of ditferent notions of fairness with cssenully

the same comiplexity.,

An alternauve approach due to Vardi und Wolper [Vardi & Wolper 86 cxploits the cluse ietationship
between lincar temporal logic formulas and Bichi automata. A Buchi cutemata is a tuple
=(Z, 5. p. S, F), where

e 2 is an alphabet.

e Sis asct of states.

®p: SxXI— 25 is a nondeterministic transition function.
e 5,5 is aset of initial states.

o [TCS is aset of designated states.

A runof A onaninfinite word w=aa, ... isasequence g5, ... where 5,5, and s, € p(s,_ . a), for

all i21. Arun s5,... isaccepung if there is some designated state that repeats infinitely often. ie., for
some s € /7 there are infinitely many s such that s, = 5. The infinite word wis uccepred by A if there is
an accepung run of .1 over w, The set of infinite words accepted by .1 1s denoted L(.4). The following

theorem is proved in [Vardi & Wolper 86).

Lemma 7. For every linear temporal formula A £, a Biichi automata A, can be constructed, where
£ =2 and |5 <2 guch that £(.1,) is exactly the set of computations satistyving the formula

f

A Kripke Structure M = (5. R 1) with mutial state sy € Scan be viewed as a Buch womaton
Ay = (2.5 {5} p. 5 where T = 247 and 57 e pls.ay iff (s.s'ye R and a = /(s). Note that any

mfimite run ot this antomaton is accepting, £(4y,) is the set of computations of Ay,. has. inorder o

determine whether Mos B A fhicis sufficient to check whether LLANEC T L) wempty Thiseon he

L. ‘ w ; - " P e R a® g AT M e et -
R e G R I SRR R S S A S A LR L RS

A\ LA

P s,

AR

s 2 W B
.

o
@ v

e

da»

»

.‘.."..‘ [N‘ . Y _.'.‘{'(PREXR,

VLI PN
a’s

e

‘p Y.
ot
B

E

a2) RN

3

LW B Y
. L)

‘I PP P AR

b

»
s 2

-

P

¢

&

F oo

-

. e A Ba %p s S Pt Ap St At e S At e gt m A T g At At p et it At S At gt ettt atm it
G A Ta T R T S o e v S T S S Ay AR A T WA R, WY

16

determined by an automata theoretic construction with essentially the same time complexity as the

Pnucli Lichtenstein algorithm.

Onc of the cxpected advantages of using lincar temporal logic is that fairness constraints can be
handled dircetly. However, if fairness constraints arc included as part of the specifications, the formulas
that must be checked will in general be quite large. For instance, consider 4 fairness coustaint which
requires that progress be made from any state in the program. The formula that expresses this property
is

A /\SﬂG(at s) - Lrest of specification?),
which hass gi/c O S]). This problem was realized Ly Lichtenstein and Pnucli and by Vardi and Wolper.
They in fact handle fairness by means of fairness constraints in a manner very similar to the way it is
handled in [Clarke ct al 86a]. Another problem with using lincar temporal logic is that in zeneral it is
impossible to handle specifications which involve existential path quantifiers. Although it 1s possible to
check simple formulas of the form F f where fis a restricted path formula, it is not possible to check
formulas like AG(FFf), which is uscd to cexpress absence of deadlock in the example in section 3.
Morcover, model checking for the full logic CTL" is no more difficult than for lincar temporal logic as

was shown by Emerson and Lei {Emerson & Lei 85).

‘Theorem 8: If we arc given an algorithm ALy, to solve the model checking problem for lincar
temporal logic, then we can construct an algorithm ALy, " for the full logic Cl L" that has the same

order ot complexity as ALpry.

7. Applications

Scquential circuit verification is a natural application for the type of veritier discussed in this paper.
Bochmann [Bochmann 82] was probably the first to realize the usefulness of temporal logic for
describing the behavior of circuits. FHe verificd an implementation of a seif-timed arbiter using iincar
temporal logic and what he called “reuchability analysis.” The work of Malachi und Owicki [Malachi &
Owicki 81] identificd additional temporal operators required to express interesting propertics of circuits
and also gave specifications for a large class of modules used in sclf-timed circuits. Although these
rescarchers contributed significantly toward devcloping an adequate notation for cxpressing the

correctness of scquential circuits, the problem of mechanically verifying a circuit remaimed unselved.

In [Mishra & Clarke 85] Clarke and Mishra showed how the EMC algorithm could be used to venty

various temporal propertics ot asynchronous circuits. {hey developed a technique for extracting a sate

3

- i e |

S G

17

graph directly from a wire-list description of the circuit (i.c., from a description of the circuit in terms of
its components and their interconnections). The model checker was then used to show that state graph
satisfied various specifications expressed in temporal logic. In this way they were able to determine that
a sclf-timed queuc clement described in Seitz” chapter of Mcead and Conway [Scitz 80) did not satisfy its
specifications. ‘Their work was later extended by Browne, Cluke. Dill. and Mishra[Browne ct al
86] who showed. in general, how a mixed gate and switch lovel circuit simulator could be used to extract
a state graph from a structural description of a sequential circuit. ‘The basic simulation algorithm is
shown in Figure 7-1. Circuits are usually designed under the assumption that certain input sequences
and combinations will not occur. Their prograim cxploits this observation o present 1 combinatorial
cxplosion in the number of states tiat arc generated, by allowing the user to specify a set of conditions

under which the inputs can change.

{The procedure below uses a hash table that maps node

value assignments to states.To construct the state machine,
call this procedure on a node_value_assignment for the
initial state.)}

procedure BuildGraph(Node_value_assignment) rcturn a state
begin
if there is a state for the node_value_assignment
already in the table then rcturn the state;
else
Create a new state;
Label state with nodes that have 1 values;
Store state and node values together in hash table;
for each possihle input assignment do
Combine current values for internal nodes and input
assignment into a new node_value_assigament;
Simulate one step to find a new node assignment;
Call BuildGraph recursively on new node assignment;
Add value returned by previous line to successors of
current state;
end
end
end

Figure 7-1; Algorithm For Constructing Kripke Structure rom Ciruit

The circuit simulator in [Browne ct al 86] used a unit-delay timing modcl in which the swuching
delays of all the transistors and gates are assumed to be equal. While a umt-delay moedel is satistactory
for synchronous circuits, it may not he appropriate for asynchronous circunts. In Il & Clarke $6) Il
and Clarke showed how Kripke structures could be extracted from a gate level description of a cureunt

under a model of ciccuit behavioe that permitted arbitrary nonezero delays 10 e assodiated with the

outputs of the pates, The basic idea hehind then approach is quite simple. Considet an AND e wath

-

o .

o

w2 a s a 8 4

y

3 AT
'\'!‘t’«‘n'!‘\l. o,

PR AT PRI Y

adinfialia

18

two inputs, x and y, and a single output z. Assume that the gate is in an unstablc configuration with x
low, y high, and z high. The Kripke structure for the circuit containing this gate will have a state
corresponding to the unstable configuration as shown in Figure 7-2. The state will have a self-loop and
a transition to another state representing a stable contiguration in which the output is low. Fairness
constraints, as described in Section 4, arc used to insure that the system docsn’t remain in an unstable
configuration forever. In the case of the AND gate, it is sufficient to require that mfinitely often

2= XxAy.

XYZ

Figure 7-2: Krikpe structure for unstable configuration of AND gate,

In practice, the arbitrary delay model is much too conscrvative. Many circuits are “lmost speed
indcpendent™ They do not appear to Le correct under a pure arbitrary delay model, but would work
given reasonable assumptions about the relationships between the delays. When the circuit Jdesigner
has a great deal of control over the magnitudes of circuit delays, exploiting more detailed ¥nowledge of
circuit timing can result in smaller and faster circuits. In fact, actual circuits often rely on such
assumptions. [n [Browne et al 85] and [1Jill 86] a method is described for adding such assumptions o a
circuit description and incorporating them into the state-graph construction. Possible timing constraints
include constant upper and lower bounds on individual delays, and bounds on the differences betwecn
delays. Using constraints of this form, onc can say for example: “the delay of the first AND gate 1§
between 5 and 10 nanoscconds” or “the delay of the first AND gate is greater than the delay of the
sccond AND gate.” The state graph constructed with respect to a particular sct of delay assuinptions
rules out somge circuit cxccutions which would be allowed under an arbitrary delay model, tence,
formulas in CTL. which might not have been true in an arbitrary delay model may be true with respect
to particular delay assumptions (because &l the counterexample paths are ruled out by the dely
assumptions). This technigque was applicd to a patented asynchronous queue cell m [Browne ot il 85).

The authors determined that the circuit did not meet its specifications under the arbitary clement delay

~ Nt
) (,..

.\ ', l'\

-.-.\

NN NN

R A N A Y I SR

o

R Ay R N A e

19

modcl. However, under the assumption that the input was slower than two of the circuit gates, they

showed that the circuit met its temporal logic specifications.

An alternative approach obtains the state diagram by compilation from a specification of the original
(synchronous) circuit in a simple programming language-like notaton. Browne and Clarke ([Browne et
al 86}, [Browne & Clarke 86]) usc a Pascal-tike state machine description language called SML. for this
purpuse. ‘Ihe language includes the standard control structures if, while, and loop/exit. A cobegin
statement 1s also provided for simultancous exccution of statements in lock-step. Since SMI. programs
will ulimately be implemented in hardware, the only data types nermitted arce boolean and (Bounded)
mteger. The output of the SML compiler is a deterministic Moore Machine that can be automaically
i.iplemented as a PLA, PAL. or a ROM. The output can also be analyzed for correctness using the
EMC algorithm. In [Browne 86] Browne describes a specialized version of the EMC algonthm that can

check Moorc machines much more rapidly than the original algonthm,

Another potential arca of application is the verification of nctwork communication protocols. The
alternating bit protocol [Bartlet et al 69] for reliable transmission of messages by & noisy communication
channel is a simplc example of such an algorithm. By using the CTL modc! checking procedure it is
nossibic to determine in a few scconds whether this protocol meets its specificetions [Clarke <t al 8A4].
Sitakis at Grenoble [Quiclle & Sifakis 81] and Kurshan at Bell [.abs {Kurshan 86] have also considered
applications involving network protocols. The dulay assumptions mentioned above may be usetul for

describing the real-tirne behavior of such protocols.

8. Conclusion

Although the verification technique described in this paper has already been used o find some
nontrivial errors in circuit designs and communications protocols, more rescarch needs to he done
before it will become a truly practical debugging tool for use by system designers. One problemn s die
cxpressibility of the underlying temporal logic. For circuit specitication g Jagranis may be morce
natural to use than temporal logic formulas. Of course, temporal logic 1s more gencral singe there s no
analogue of negation, disjunction, or conjunction for timing diagrams. [t may he possble to ¢ither
systematically translate timing diagrams into temporal logic formulas or check them directly using an
algorithm similar to the one uscd by the modcl checker. If so, Uns would simphfy the task of specitving
a comnplicated circuit and also allow the designer to be more contident that specifications actually mean

what he thinks they mean.

.

-

.oy
o

.

[ST PR]

II-,(..'.'I

P?

-

20

b RN

P

The most important problem, however, is the swate explosion problem. There are several different

-; strategies for handling this problem. [n ventfying asynchronous circuits, for example, buggy circuits
: sometimes result in much larger state graphs than correct circuits. This happens because the activity in
j the circuit is inuch more disordered after an error has occuired. One possible solution i this case is o
run the program winch builds the state graph and the medce! checker as co-routines, creating states only
) as they need to be referenced by the model-chiecker. In [Dill 86] this technique is called luzy state
:. generanion, by analogy to lazy evaluanion in programming language implementations. By using this
N mcthod. an crror could be discovered and reported after construcung only a small part of the entire
. state graph: tus would not only speed up the venfication process, it would abo make it poss.bhle
: verify some circuits which coutd not be verined 1f the entire girapih had t be constructed.
'J.
» . A 4 4
-~ Another approach to the state explosion problem is to exploit the hierarchical structure of complex
i finite state concurrent systems. If an appropriate subset of C'LLL is used t [Mishra & Clarke 85], [Clarke
’-C ct al §6b]), then lower level subcircuits can be simplified hy "hiding™ some of their internal nodes (more
:', precisely, making it illegal to use them in temporal logic formulas) and meraing groups of states that
po become indistinguishable into single state. Preliminary rescarch in [Mishra & Clarke 83] indicates that
- by using this technique it may be possible to cut-down dramatically on the number of states that need
f: to be examined.
-
o) Finally. special techniques may be appropriate for concurrent systems that ar¢ composed of man;
idenucal processes. Consider, for examiple, a distributed mutual exclusion algorithm for processes
: arranged in 1 ring network in which mutual cxclusion is guarantced by means of a wken thar 15 pussed
- around the ring ([Dijkstra 85, [Kurshan 85]. [Martin 85]). A strategy that is often used for debuaming
‘_; such systems is to consider first a reduccd system with one or two processes. Tt is possible toshow that
5 the reduced system is correct and if the individual processes are ceally identical, then one s temptad to
’,‘ conclude Gt Qe entre systemn will be contect, T [Clarke ¢t ul S6L] an aitempt is madc o provade a
solid theorctical hasis that will prevent fallacious conclusions in arguments of this tpe. [ho cuthers
2 describe a temporal logic called Indexed CT1°, or ICTL for specifying networks cfidenucal processes.
‘The logic includes all of CIL" with the exception of the nexttime operator: in addition. it permits
: formulas of the form A fTi) and V (1) where f1r) is a formuia in which all of the atomic propositions
A arc subsciipted by o ‘\ Kripke stlructurc tor o family of .V identical precesses may be ebtained s a
product of the state graghs of the individual processes. Instances of the same atomie proposittion
) ditferent processes are distinguished by using the number of the process as a subscipt, thus, 1,
d
S represents e mstance of atomic proposition Fassectated wirh process S,
)

b

VAT ARNAES PRI e e N N R I
P 3" 3 S 4 [}

aiaAd A WA

21

Since a closed formula of the new logic cannot contain any atomic propositions with constant index
values, it is impossible to refer to a specific process by writing such a formula. Hence, changing the
number of processes in a family of identical processes should not effect the truth of a formula in the
logic. This intuitive idca is made precise by introducing a new notion of bisimudation [Milner
79] between two Kripke structures with the same set of indexed propositions but different scts of index
values. [t is possible to prove that if two structures correspond in this manner. a closed tormula of
Indexed CTL” will be true in the initial state of one if and only if it is truc in the initial state of the

other.

These ideas are ilustrated in [Clarke ct al 86b] by considering the distributed mutual cxclusion
algorithm mentioned above. The atomic proposition ¢; is truc when the i-th process is in its critical
region, and the atomic proposition d, is true when the i-th process is dclayed waiting to enter its critical
region. A typical requirciment for such a system is that a process waiting to enter its critical region will
eventually do so. This condition is casily expressed in ICTL® by the formula /\.\G(d, = AFc). The
results of [Clarke ct al 86b] can be used to show that exactly the same ICTL” fc;rmulas hold in a network
with 1000 processes as hold in a network with two processes. The EMC algorithm can be used to check
automatically that the above formula holds in networks of sizetwo and conclude that it will also hold (a
nctworks of size 1000. At present this methodology has only been partially automated. however, fhe
bisimulation must be cstablished by hand and this generally requires some representation of the targer
Kripke structure. Scveral rescarchers are attempting to find a way of automating this phase in a manner

that avoids building the larger Kripke structure.

Other techniques for avoiding the state explosion problem are being investigated by Kurshan arnd
Wolpcer. In Kurshan's system {Kurshan 85] this problem is handled by using a homomorphism to
collapse a large state machine into a much smaller one while prescrving those propertics that are
uripotlant for verification. Since Kurshan does not use temporal logic fonnulas for specification, lie has
no analoguc of the indexed formulas er of the bisimulation theorem used in [Clarke ot al 86b). Welper
[Wolper 86] considers a logic somewhat like ICTL" for reasoning about programs that arce data-
independent; however, his indexed variables range over data elements, not over processes. Also, there
is no notion of correspondence between structures in his work. Some ultimate limitations on this type of

reasoning arc discussed in Apt and Kozen [Apt & Kozen 86].

o SRR T MUY Vol TRl R W TRSAT RN T N N W Py PP ' . e - e " im e “u%w .
) . “‘F',N ‘FJ"' -’ ‘.\ ’- \ '(,\.,‘\‘,\} 'V".'.:‘ .. J‘\J".'?-‘_-' _,_‘L‘ RN

r o

PV I S ST S

(W3 Y N T T

> e s
A |

IR
e o

5

> f.f‘l (_‘. 0

-

eyt te s
.-“'Ill

oV

e
e e

A LA G Y

4 u_n_ o

I}
i
%

":‘ v . i‘*ﬂﬁz}‘}} N

22

References

[Apt & Kozen 86] K. Aptand D. Kozen. Limits for Automatic Verification of IFinite-State Concurrent

Systems. [ufl Process. Lett. 22(6):307-309, 1986.

{Bartlct ct al 69] K.A. Bartlet, R.A. Scantlebury, P.I. Witkinson. A Note on Reliable Full-Duplex

Transmission over Half-Duplex Links. Communicattons of the AC M 12(5):260-261, 1969.

{Ben-Ari et al 83) M. Ben-Ari, 7. Manna. A. Pneuli. The Temporal Logic of Branching Time. Acta

Informatica (20):207-226, 1983.

[Bochmann 82] G. V. Bochmann. Hardware Spccification with Temporal Logic: An Example. IELE

Transactions on Computers C-31(3), March, 1982.

[Browne 86] M. C. Browne. An Improved Algorithm for the Automatic Verification of Finite State
Systems using Temporal Logic. In Plroceedings of the 1986 Cunference on Logic in Computer Scierce.,

pages 260-267. Cambridge, Massachusctts, June, 1986.

[Browne & Clarke 86] M. C. Browne, E. M. Clarke. SML: A high level language for the design and
verification of Finite State Machines. In [FIP W 10.2 [nternational Working Conference from H{DL

Descriptions to Guuranieed Correct Circuit Designs, Grenoble, France.. TFIP, Scptember, 19806.

[Browne ctal 85) M, C. Browne, E. M. Clarke, D). Inll. Checking the Correctness of Sequential

Circuits. In Proceedings of the 1985 International Conference on Computer Design. [EEE, Port Chester,

New York, October, 19835.

.....

[Browne et al 86) M. Browne, E. Clarke, D. Dill, B. Mishra. Automatic Verification of Sequential

Circuits using Temporal Logic. [EEE Transactions on Computers C-35(12). December, 1986.

[Browne ct al 6b] M. C. Browne, E. M. Clarke, and D. Dill. Automatic Circuit Verification Using
Temporal l.ogic: Two New Examples. G.J. Milne and P.A. Subrahmanyum (cditors). Formal Aspecis

of VLSI Design. Elsevier Science Publishers (North Holland), 1986b.

[Clarke & Emerson 81] F.M. Clarke, F.A. Finerson. Synthesis of Synchronization Skeletans for
Branching Time Temporal Logic. In Pruc. of the Workshop on 1 ogic of Programs. Springer-Verlag,

Yorktown Heights, NY, 1981.

[Clarke et al 86a] E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications. ACM Transactions on Programming

Languages and Systems 8(2):244-263, 1986.

[Clarke et al 86b] E. M. Clarke, O. Grumbcrg, M. C. Browne. Rcasoning about Networks with many
identical finite-state processes. In Proceedings of the Fifth Annual ACM Symposium on Principles of

Distributed Computing., pages 240-248. ACM, August, 1986,

[Dijkstra 85] E. Dijkstra. [nvariance and non-dcterminacy. In C.A.R, Hoare And J.C.Shepherdson

(editors), Mathematical Logic and Programming [.anguages, pages 157-163. Prentice-Hall, 1988,

[Din 86) D. Dill. A Trace Theorctic Approach to Asynchronous Circuit Verification. Workshop on
Design and Implementation of Concurrent programs,Groningen, The Netherlands, November 17-21.

1986

l‘.i..

R

_ l'..l‘.. ~, 'i'-: I‘ \,-'_(- - ‘4-“; «)qn". f-.'--.'. .- ::..‘:.'- -‘. '. . (.-_. &)"-\ TN :: ‘-'."'.‘-""J'\

"‘-\

X

X

(™]

-
>

R T T e EA

ey e e Sl T

O
‘\O“

L !. “-«.A.» \l!‘:‘.. LN ‘c\.

[Dill & Clarke 86] David L. Dill and Edmund M. Clarke. Automatic Verification of Asynchronous

Circuits using Temporal Logic. /EF Proceedings 133, pt. E(5), September, 1986.

[Emerson & Clarke 81] E.A. Emerson and E.M. Clarke. Characterizing Properties of Parallel Programs
as Fixpoints. In Springer Lecture Notes in Computer Science. Volume 85: Proc. of the Seventh

International Colloquiwm on Automata, .anguages and Programming, Springer Verlag. 1981,

[Fmerson & Halpern 83] E.A. Emerson, J.Y. Halpern. ""Sometimes” and "Not Never” Revisited: On

Branching versus Lincar Time”. [n Proc. [0th ACM Symp. on Principles of Programming Languages.

1983.

[Emerson & Lei 85] E.A. Emerson, Chin Laung Lei. Modalities for Model Checking: Branching Time

Strikes Back. Twelfth Symposium on Principles of Programming Languages, New Orleans, La. , January,

1985.

[Francez 86] N. Francez, Fairness. Springer Verlag, 1986.

(Gabbay ct al 80] 1. Gabbay,,A. Paculi, S. Shelah, and J. Stavi, The Temporal Analysis of Fairness. 7th

ACM Symposium on Principles of Programming [.anguages. :164-173, January, 1980,

{Hoare 78] C.A.R. Hoare. Cominunicating Sequential Processes . Cummunications uf the ACM 21{8),

August, 1978,

[Hughes & Creswell 77} G.E. Hughes and M.J. Creswell. An [ntroduction 1o Alodal Logic. Mcthuen

and Co., 1977.

V'"""""":-"""“:/-"'.'-' - }-. \‘_.}._-,. \;\,_ }, N ~_._ .r-".r"*"-r “,
TR 0} O '’ . . A .

5.3,\-\.\- T
A

\\ A Y \,\",

TS . . d'a b R e & ast Aot et ad Bd’ Rt Y] '
MM W WL R W ;. [k Bl S Val W LRVl Vil ST, RS A l‘-“-ﬁ‘-"ﬂ'}\fc"

25

[Kurshan 85] R.P. Kurshan. Modelling Concurrent Processes. In Proc. of Symposia in Applied

Muathematics. 1985.

[Kurshan 86] R.P. Kurshan. Testing Containment of w-Regular Languages. Technical Report

1121-861010-33-TM, Bell Laboratorics Technical Memorandum, 1986.

{Lamport 80] L. Lamport. "Sometimes” is Sometimes "Not Never”, [n Seventh Annual ACM
Symposium on Principles of Programming l.anguages, pages 174-185. Association for Computing

Machinery, Las Vegas, January, 1980.

[l.ehmann et al 81] . Lehmann, A, Pneuli, J. Stavi. Impartiality, Justice, and Fairness: The Ethics of

Concurrent Termination. Automata, Languages, and Programming, Springer Verlag LNCS 115, 1981.

[Lichtenstein & Prueli 85} O. Lichtenstein and A. Pnucli. Checking that Finitc State Concurrent
Programs Satisfy Their Linear Spccification. In Conference Record of the Twelth Annual ACM

Symposium on Principles of Progranuning [.anguages. New Orleans, La,, January, 1985.

[Malachi & Owicki 81] Y. Malachi and S. S. Owicki. Temporal Specifications of Self-Timed Systems.

In H.T. Kung, Bob Sproull, and G. Stecle (cditors), VLSI Systems and Compuztations. 1981.

[Martin 85} A. Martin. The Design of a Self~Tiined Citeuit fur Disuibuted Muiudl Exclusion. In

Henry Fuchs (editor), Proc. 1985 Chapel I1ill Conf on VLS, pages 247-260. 1985.

[Milner 791 R. Milner. Lecture Notes in Computer Science. Volume 92: A Calculus of Communicating

Systems. Springer-Verlag, 1979.

-

2

el

S
.Y,

1
”

ARy AN

g
.

a_n

<

SN
=

.
S

N

P, VYS

WK

3

(N} 0 g4 e s At "
AL AT AT AT T A AN Y T s MNaVadaudu oy wy L W W EolatUlet B

K
.4:
A
?

s
3 26
i

:;' [Mishra & Clarke 85] B. Mishra, E.M. Clarke. Hicrarchical Verification of Asynchronous Circuits using
e
. Temporal Logic. Theoretical Computer Science 38:269-291, 1985.
!
e {Owicki & Lamport 82] S. Owicki, .. Lamport. Proving Liveness Properties of Concurrent Programs,
W
::‘ ACM Transactions on Programming I.anguages and Systems 4(3):455-495, July, 1982.

W

, [Pnculi 77 A. Pneuli. The Temporal Semantics of Concurrent Programs. In /8th Sy mnposium on
¥

L]
\ 3 Foundations of Computer Science. 1977.
)

0
P
""‘ [Quielle & Sifakis 81] J.P. Quielle, J. Sifakis. "Specification and Verification of Concurrent Systems in
M)
5 CESAR". In Proc. of the Fifth International Symposium in Programming. 1981.

.

N
2 [Quielle & Sifakis 82] J.P. Quiclle, J. Sifakis. Fairness and Related Properties in Transition Systems.
4 IMAG (292), March, 1982,
Ey,
b :é

\.

D)

?. [Scitz 80) C.Seitz. System Timing. /nroduction to VI.SI Systems (C.Mead and L.Conv.ay). Reading,
e MA, Addison-Wesley, 1980.

5
-
[, . .
. [Sistla & Clarke 86] A.P. Sistla, EM. Clarke. Complexity of Propositional Temporal Logics. Journal of
’. the Association for Coniputing Machinery 32(3):733-749, J uly, 1986,
&
f,. [Vardi & Wolper 86] M. Vardi and P. Wolper. Au Automata-Theorctic Approach to Automatic
e
¥ Program Verification. In Proceedings of the Conference on Logic in Computer Science. Boston, Mass.,
, o
Py June, 1986.
j
i
ul ‘ [Wolpcer 86] P. Wolper. Expressing Intercsting Properties of Programs in Propositional Temporal

"'
:::':. Logic. In Thirteenth ACM Symposium on Principles of Programming Languages. 1986.

U
e

i
o

N
bl
1 ,a

]
LA -y s LT - ™ v y L P Wy AR AN R e PP I N I A T s o g o o, & w" n™ .. DI
IR N E Y A X AN By "] "’ ~ ’ Y '\- V) N IS 0 A -"‘\ X - q. o~ .'-..:h:_'(.. \‘n}i\!‘\:‘\i_':-_i\i.‘\:\“:-‘nj

DD
.o":o.\:':‘:c

Aot A e T e T e, S
) AR Sl T e S M Wl
n‘{’t')u‘, ' '!!’.‘1‘3':.\':‘-‘.‘\':\{‘.“,R."\’n."'\." -

